
D~ -.,. - COPY , jDTJIC~ucp

CECOM

CENTER FOR SOFTWARE ENGINEERING

ADVANCED SOFTWARE TECHNOLOGY
00

DTIG

Subject: Final Report - Guideline to Select,
Configure, and Use an Ada Runtime

Environment -

MAY 2 - i99

•, .•- - ' ' ,r t.

IV'i0F)Ep A)

CIN:1 C02 092LA 0001

15 FEBRUARY 1989

[0 Y I

'd A0

GUIDELINE TO SELECT, CONFIGURE, AND USE

AN ADA RUNTIME ENVIRONMENT

FINAL REPORT '

PREPARED FOR:
U.S. Army HQ CECOM

Center for Software Engineering
Advanced Software Technology
Fort Monmouth, NJ 07703-5000 A o

NTIS GRA&I

DTIC TA.B

PREPARED BY: uDIo,.,e

LabTek Corporation Just ific .tio
8 Lunar Drive

Woodbridge, CT 06525 By
Distribution/

Availabili ty Cod es
IAvc --a,d/or

ist Special

DATE:
30 September 1988

r ___

Ada-86 is a trademark of SofTech Inc.
ARTK is a trademark of Alsys.
DDC-I Ada Compiler System and DACS-80x86 are trademarks of DDC-I, Inc.
DEC, VAX VME, VAXELN, MicroVAX and VMS are trademarks of Digital Equipment Cor
IBM is a trademark of International Business Machines Corp.
Intel and iSBC, ASM86, LIB86, LINK86, and LOC86 are trademarks of Intel Corp.
M68000, MC68881, MC68010, and MC68020 are trademarks of Motorola Corp.
Sun Workstation is a registered trademark of Sun Microsystems, Inc.
TeleSOFr and TeleGen 2 are trademarks of TeleSOFr.
UNIX is a trademark of Bell Laboratories.
VADS is a registered trademark of VERDIX Corp.
VRTX, VRTX32 are trademarks of Ready Systems.

EXECUTIVE SUMMARY

The Ada Language has incorporated many features such as tasking, dynamic storage

management, and exception handling that require substantial execution-time support. Most

of these features were not previously available in commonly used real-time languages, but

were instead provided by an separate 'executive The inclusion of these features into the

language expands the possibility for transportable and reusable software, but complicates

the software development process to some degree. Engineers that previously had

familiarity with their own executives, now are forced to accept the code of a compiler

vendor for the execution-time support. This guide has been written to help software

developers in the difficult task of selecting, configuring, and using a runtime that will meet

the needs of their application.

The wide variety of applications for which Ada is used necessitates considerable flexibility

within the implementation of the runtime code. Different algorithms for tasking, storage

management, interrupt handling, and exception propagation can radically effect the

behavior of real-time programs. Variations among compilers for the same processor can be

as great as a factor of six in runtime size and a factor of eleven in tasking performance. It is

therefore essential that software developers completely understand the characteristics of

the available runtimes prior to selecting one for use on a project.,Due to the cost and time

involved in a compiler procurement (runtime source code can cost as much as $250,000), it

is oftcn difficult to change to a new compiler implementation afte a poor choice has been

made. Unfortunately, a compiler that is good for one applicatind may not necessarily be

proper for other applications. Therefore, it is more a matter of matching a compiler

implementation to an applcation raLher tnan simply finding "the b st compiler".

7-
/ -II

This guide lists all of the known (validated) Ada compilers that are developed for use in

embedded applications. For each compiler, the supplier was contacted and asked specific

questions about their implementation. As much information as possible was obtained from

the suppliers to be summarized in the report. Performance benchmarks are included as a

rough efficiency comparison among many of the implementations. The difficulty in

obtaining this information cannot be overstated. Frequent letters with follow-up phones

calls were necessary to obtain answers to even a few questions. Just as with the compiler

implementations, substantial variation exists among compiler vendors in their willingness to

provide detailed literature. The effort that went into collecting this information convinced

the researchers that such a guide was worthwhile. For each individual project to go through

a collection effort is a tremendous expenditure of effort and is unlikely to be as complete as

this guide.

Finally, guidance is provided on bow to proceed with the selection process, what questions

to ask once the the choice of compilers is narrowed down to one or two, and what to do

after the compiler and runtime have been selected. Special attention is paid to areas that

experience has shown to be particularly troublesome. These include:

1.) Maintaining configuration control over variations in the runtime; insuring that new

device drivers which are configured into the runtime do not violate runtime

conventions, especially with the processor state (privilege, interrupt level, memory

management registers, etc.); and,

2.) Taking care not to extend the worst-case interrupt latency by allowing interrupts to

be disabled for an extended period.

These types of problem usually do not manifest themselves in obvious ways, but rather

result in working but unreliable systems. They may pass the acceptance testing and operate

properly for months only to fail in a catastrophic fashion during a critical moment.

It is hoped that this guide will assist software developers through some of the problems in

adopting Ada for real-time embedded projects. By providing information on how Ada

implementations operate, there will be a reduction in the uncertainty associated with

switching from assembly language executives, where every aspect is provided in minute

detail, to Ada where the executive functions appear as a black box (or magic).

Table of Contents

1. Introduction ... 1

1.1 Background ... 1

1.2 Purpose and Intent .. 1

1.3 Definitions .. 1

1.4 Organization of Document .. 3

1.5 How to Best Utilize This Document ... 4

2. Approach .. 6

3. Ada Runtime Features ... 8

3.1 Dynamic Memory Management ... 8

3.2 Processor Management ... 8

3.3 Interrupt Management ... 9

3.4 Time Management ... 9

3.5 Exception Management ... 9

3.6 Rendezvous Management ... 9

3.7 Task Activation .. 9

3.8 Task Termination .. 9

3.9 I/O Management ... 10

3.10 Commonly Called Code Sequences ... 10

3.11 Target Housekeeping Functions ... 10

4. Bare Machine Targets ... 11

4.1 PIWG Benchmarks..13

4.2 Vendor Address Listing .. 17

Table I. Bare Machine Targeted Compilers by Processor 18

1750A ... 18

-i-

Table of Contents

80x86 .. 19

680x0 ... 22

32032 .. 25

V A X processors ... 25

CA PS/A A M P .. 26

Pow erN ode .. 26

Table II. Bare Machine Targeted Compilers by Vendors .. 27

V endor Supplied Inform ation ... 28

AITech Software Engineering, Ltd .. 28

A lsys .. 36

CA P Industry, Ltd .. 59

D D C -I ... 65

D igital E quipm ent C orp. ... 81

G ould, Inc. .. 83

Interm etrics, Inc. .. 85

R ational .. 91

SofT ech, Inc. .. 126

System D esigners Softw are, Inc. ... 148

Tartan Laboratories, Inc. ... 162

TeleSoft, Inc. ... 174

T LD System s, Ltd ... 189

V erdix C orp ... 196

V endor Inform ation N ot A vailable .. 219

Advanced Computer Techniques Corp 219

H arris Corp .. 220

R ockw ell International .. 221

-ii-

Table of Contents

System D esigners Softw are, Inc. ... 222

TeleSoft/Intel C orp./TeleLO G IC ... 223

T eleSoft, Inc. ... 224

V erdix C orp ... 227

5. Application C haracteristics ... 229

5.1 E lectronic W arfare .. 230

5.1.1 R adar System s 230

5.1.2 Electronic Counter Measures (ECM) .. 231

5.1.3 Signal Processing ... 231

5.2 W eapon G uidance ... 23 1

5.3 Fire C ontrol .. 23 2

5.4 Sim ulation System s 232

5.5 C31 System s 232

5.6 O perating System s 23 2

5.7 N avigation System s .. 233

5.8 A rtificial Intelligence ... 23 3

5.9 R obotics/Process Control ... 23 3

6. G uidelines ... 23 4

6.1 To Select a R untim e E nvironm ent ... 234

6.1.1 D ocum entation ... 23 4

6.1.2 D egree of C onfigurability 23 4

6.1.3 Chapter 13 ... 23 5

6.1.4 A ppendix F .. 23 5

6.1.5 Target D ependent Inform ation 23 6

6.1.6 Target Initialization ... 236

6.1.7 Target I/0 23 6

-111-

Table of Contents

6.1.8 Target Timer .. 237

6.1.9 Data Representation... 237

6. 1.10 Implementation of Tasing..2-38

6.1.11 Interrupt/Handler/Interrupt Vectors 239

6.1.12 Storage Management ... 239

6.1.13 Subroutine Call and Parameter Passing Conventions 240

6.1.14 Saving Machine State During a Context Switch 240

6.1.15 Exception Handling ... 240

6.1.16 Unhandled Exceptions ... 241

6.1.17 Generics... 241

6.1.18 I/0 Interfaces.. 242

6.1.19 Compiler Capacity and Tool Availability.................................... 242

6.2 To Configure a Runtime. Environment... 243

6.2.1 Bootstrapping.. 243

6.2.2 Interrupt Vector .. 244

6.2.3 User-Configurable Module Dependencies 244

6.2.4 Timer Interrupt.. 244

6.2.5 Linker Options .. 244

6.3 To Use a Runtime Environment... 245

7. Effects of Runtime Issues on the Development of Reusable Software 247

8. Summary... 248

9. References .. 249

10. Appendix A .. 252

-iv-

list of Figures

1. Ada Runtime Environment (RTE).. 3

2. Runtime Environment Components.. 8

3. The Application Domain.. 230

List of Tables

1. Bare Machine Targeted Compilers (listed by target) .. 18

2. Bare Machine Targeted Compilers (listed by vendor)... 27

-Vi-

Guideline to Select, Configure, and Use an Ada Runtime Environment

1. Introduction

1.1 Background

An extensive effort is underway by the DoD to transition Ada technology into the real-time
embedded application domain. Much work has been done to determine why the transition
to the Ada programming language is not, in actuality, as smooth as originally anticipated. A
primary reason for the difficulty, cited in LabTek's 1987 report, titled "Software Engineering
issues on Ada Technology Insenion for Real-time Embedded Systems", is the incorporation of
a substantial runtime environment into the compilation system.

An Ada compilation system, in addition to generating the code for the semantics of the Ada
language, also supplies the code that was previously provided by a separate executive or
operating system. It provides an extensive runtime which other traditional compilers did
not. Therefore, application developers, who previously built their own executives, have to
sacrifice some of the ability to configure the executive to suit the application when
transitioning to Ada. This report will detail the extent of configurability available in Ada
runtime environments today.

1.2 Puipose and Intent

The runtime environment of the Ada compilation system must always comply with the rules
of the Ada language as defined by the Ada standard, ANSI-MIL-STD-1815A-1983. [5] Yet
the Ada standard provides significant flexibility in how the runtime environments support
the language definition. The runtime environment is thus allowed to exhibit different
performance characteristics (that may reflect the needs of the application) for the same
features or combination of features. In fact, Ada provides the pragma construct as one
method to help the Ada compilation system determine the performance characteristics that
the runtime environment should provide for an application. Thus, the runtime environment
of an Ada compilation system may be able to accommodate an arbitrary number of
interpretations of an application in Ada that comply with the Ada language standard.
These interpretations can be guided by the pragma construct or by other mechanisms
provided by the Ada compilation system.

It is the purpose and intent of this report to produce a guideline to select, configure and use
an Ada runtime environment. It will detail the options available to application developers
who must contend with Ada runtime environments. A view of the current state of the
technology for bare machines will be presented.

1.3 Definitions

Following are the definitions for terms found throughout this report.

ARTEWG: The Ada RunTime Environment Working Group, is a group sponsored by the
Association for Computing Machinery (ACM), Special Interest Group for Ada (SIGAda),
whose purpose is to address the problems encountered in Ada runtime environments.

A VO: The Ada Validation Organization provides administrative and technical support to
ensure that Ada compilers faith fully implement the Ada programming language standard
(ANSI/MIL-STD-1815A-1983). [4]

Guideline to Select, Configure, and Use an Ada Runtime Environment

Base Compiler. An Ada compiler for which a current validation certificate exists. [4]

Base Configuration: The specific configuration on which the base compiler is tested by an
Ada Validation Facility (AVF) as part of the validation process. [4]

Ada Compiler. A system (in a loadable or executable code form) which translates Ada
source programs into object code that, when loaded with the target run-time system,
executes on a target computer in a manner that is in compliance with the Ada programming
language. (4] Throughout this report the phrase compilation system will be used
synonymously-

Configure an RTE: To configure an RTE is the ability to select various software
components when building the application software. Components may be selected from the
following categories: dynamic memory management, processor management, interrupt
management, time management, exception management, rendezvous management, task
activation, task termination, I/O management, and miscellaneous support functions.
Configuring an RTE is different than tailoring an RTE (see tailor an RTE).

Derived Compiler. One of the following:

1. A base compiler on an equivalent configuration.

2. A maintained compiler on a base configuration.

3. A maintained compiler on an equivalent configuration, where any of these
pairs originates from a base compiler and base configuration pair. [4]

Equivalen. Configuration: Any configuration of the same computer architecture(s) and
operating system for which compliance is achievable using the same ACVC (Ada Com piler

alidation Capability) version used in the validation of the base compiler on the base
configuration. [4]

Host Architecture: The computer architecture on which the compiler resides.

Maintained Compiler. A base compiler which has been changed in any way generally
accepted by the software profession to constitute "maintenance - usually meaning minor
change. Complete replacement or addition of some major component of a base compiler is
not considered "maintenance". [4]

PIWG: The Performance Issues Working Group, is a group sponsored by the Association
for Computing Machinery (ACM), Special Interest Group for Ada (SIGAda), whose
purpose is to write benchmark programs which can be executed on different Ada
compilation systems and provide performance information.

Runtime Environment (RTE): Consists of three functional areas: abstract data structures,
code sequences, and predefined subroutines. It includes all of the runtime support routines,
the conventions between the runtime routines and the compiler, and the underlying virtual
machine of the target computer. "Virtual" is used in the sense that it may be a machine with
layered software (a host operating system). An RTE does not include the application itself,
but includes everything the application can interact with. Each layer has a protocol
between it and the layer underneath it for interfacing. In the event that there isn't any

-2-

Guideline to Select, Configure, and Use an Ada Runtime Environment

operating system layer (the bare-machine target), the runtime includes those low-level
functions found in an operating system. See Figure 1.

Tailor an RTE: To tailor an RTE is the actual modification of the source code to achieve
the requirements of the application.

(Target) Runtime System or Runtime System (RTS): The set of subprograms, which may be
invoked by linking, loading, and executing object code generated by an Ada compiler. If
these subprograms use or depend upon the services of an operating system, then the target
runtime system includes those portions of that operating system. [4] These predefined
subroutines are chosen from the Rntime Library for that Ada compilation system.

Target Architecture: The computer architecture used for execution of object code generated
by an Ada compiler. [4]

VAXELN is a real-time operating system for DEC VAX line of computers.

APPLICATION

_ Adia RUNTIME

IPERATING SYSTEM Ac~i RTE

F HARDWARE
Figure 1. Ada Runtime Environment (RTE)

1.4 Organization of Document

Section one of this report contains the introductory information as well as the definitions of
terms found in the report.

Section two of this report details the approach used to gather the information and the
criteria used for its evaluation.

Section three of this report details the components of a runtime environment. The reader is
referred to the document "A Framework for Describing Ada Runtime Environments",

-3-

Guideline to Select, Configure, and Use an Ada Runtime Environment

proposed by the ARTEWG, October 15, 1987. [2] This document details the evolution of
runtime environments, and provides a taxonomy of the components of a runtime
environment.

Section four of this report provides a complete list of the Ada compilation systems that were
available for bare machine targets at the time of this writing. For each implementation it
contains: 1) the degree of confi~urability of the runtime, 2) storage requirements of the
runtime system, and 3) efficiency information.

Section five of this report categorizes the application domain into distinct areas. For
example, a C31 application requires different runtime features than a signal processing
application. The purpose of section five is to subdivide the application domain and detail
the runtime features needed for each subdivision.

Section six of this report provides detailed guidance for selecting, configuring and using Ada
runtime environments.

Section seven details the effects that runtime issues will have on the development of
reusable software for Mission Critical Computer Resources (MCCR) applications.

Section eight contains a summary of lessons learned.

Section nine contains the reference materials used in the creation of this report.

Appendix A of this report contains two versions of the "Survey of Runtime Environment
Components". These surveys were used to obtain information about the bare machine
target compilation systems from the compiler vendors. Throughout the period of
performance of this contract the survey was fine-tuned, thus producing a second version.

1.5 How to Best Utilize this Document

This guideline can be utilized as a reference guide or as a process for selecting an Ada
runtime environment.

For quick reference guide usage, turn to Table I, titled "Bare Machine Targeted Compilers".
This table details what compilers are available for the target of interest. Refer to the pages
listed in the right column for details on those implementations. A table of compiler vendor
names and addresses (with phone numbers) is also provided in section 4.2. Please consult
with the compiler vendors to answer any additional question you may have regarding a
specific implementation.

To use this guideline as a process for selecting an Ada runtime environment, the following
is a suggested method:

1.) Determine your system requirements. Review section five of this report, titled
"Application Characteristics" for a general description of the requirements that can be
imposed upon the application software.

2.) Review section three of this report, titled "Ada Runtime Features". For the most
part, runtime environments can be broken down into these components and it
provides a basis for further discussion.

-4-

Guideline to Select, Configure, and Use an Ada Runtime Environment

3.) Review section six, titled "Guideline to Select, Configure, and Use a Runtime
Environment". This section contains the questions to ask before selecting a specific
implementation. The list should be fine-tuned for the particular application.

4.) Review section four for details on specific compiler implementations.

5.) Contact the compiler vendor (see section 4.2 for phone numbers) to resolve any
additional questions you may have regarding a specific implementation. If
appropriate, purchase the documentation only for the compiler of interest and review
it before making a commitment to use a particular runtime implementation.

-5-

Guideline to Select, Configure, and Use an Ada Runtime Environment

2. Approach

The approach used to obtain the information in this report was:

1. The current literature, especially the ARTEWG documents, was reviewed for material
relevant to this task. [2], [3]

2. A comprehensive list of the validated bare machine target compilers was produced. [6],
[181, [221

3. A Survey of Runtime Environment Components was prepared to obtain pertinent runtime
information for the compilers of interest (determined in step two above). A copy of this
survey can be found in Appendix A. The survey was updated on an iterative basis. As
vendors/users responded, it was fine-tuned and used from that point onward. The final
version (V2.0) can also be found in Appendix A.

4. The compiler vendors were contacted and asked to respond to the survey produced in
step 3 above.

The survey was concerned with obtaining the following information: a.) degree of
configurability, b.) the storage requirements (overhead) associated with using a particular
runtime feature, and c.) performance information.

Since most compiler vendors had the PIWG benchmarks available for their products, they
were asked to supply the results, along with the speed of the processor and wait-state of the
memory. The intent was to provide performance information that could be compared and
contrasted.

5. The AVO was contacted in order to obtain copies of the validation report summaries for
each bare machine target. Of particular interest was the Implementation Dependent
Characteristics (Appendix F of the Ada Reference Manual) and the Language Features
Supported section. This turned out not to be as useful as originally expected, for two
reasons: 1.) It was not easy to obtain copies of the validation reports. It had to be ordered
through NTIS (National Technical Information Services), which was backlogged, and did
not (at the time) have copies of the recently validated compilers ready for distribution.
Typically there was a one year lag between the time a compiler was validated, and the time
the validation report was available through NTIS. 2.) The validation reports do not contain
configurability information.

6. Compiler documentation, for a few selected compilers (Tartan Laboratories, Systems
Desi*ners Software, DDC-I, and Verdix), was reviewed for usefulness and completeness.
Special attention was paid to the sections describing runtime configurability. Some vendors
were not selected because a.) they would not sell the documentation separately without
licensing the compiler, or b.) the cost for documentation exceeded our guidelines for
purchase of it.

7. The Info-Ada bulletin was utilized to obtain a database of users who could provide the
necessary information when gaps existed in vendor supplied information.

8. A mailing to a large group of people (approximately 360) concerned with Ada runtimes
was performed. The purpose was to see if anyone had specific information regarding a bare

-6-

Guideline to Select, Configure, and Use an Ada Runtime Environment

machine implementation and could provide input into this report. Those who respond
favorably were contacted either by electronic mail or phone and sent a survey.

9. The ARTEWG meetings and the SIGAda meetings, which fell during the period of
performance of this contract, were attended by LabTek personnel. Informal interviews
were held, contacts were made and surveys were distributed.

10. The input material obtained from steps 1-9 above was analyzed, and this report was
produced.

-7-

Guideline to Select, Configure, and Use an Ada Runtime Environment

3. Ada Runtime Features

This section contains a taxonomy of Ada runtime environment components (see Figure 2.)
with a description of each. Again, the reader is referred to the ARTEWG document, A
Framework for Describing Ada Runtime Environments. The taxonomy is provided here to
clarify the components referenced in the size breakdown of each runtime in section 4.

Ada Runtime
Components

Dynam;c Target
Memory Housekeeping

Management Functions

Processor Commonty
CaLted CodeManagement Sequences

Interrupt I/0
Management Management

Time Task

Management Termination

Exception Rendezvous Ta~sk
Management Management Activat;on

Figure 2. Runtime Environment Components

3.1 Dynamic Memory Management

Dynamic Memory Management is responsible for allocation and deallocation of storage at
runtime. It also detects when a request for storage cannot be fulfilled, and for raising the
exception STORAGE-ERROR as appropriate.

3.2 Processor Management

Processor Management implements the assignment of the CPU (or CPUs) to tasks that are
"logically executing". The processor management function is invoked by other components
of the runtime environment, in order to block and unblock tasks. It keeps a list of those

-8-

Guideline to Select, Configure, and Use an Ada Runtime Environment

tasks which are "looically executing" and uses this list, in conjunction with the priorities of
tasks, to select which task (or tasks) should physically execute. This component is often
called the "scheduler".

3.3 Interrupt Management

Interrupt Management is responsible for initialization of the interrupt mechanism of the
underlying computing resource, and it is also responsible for resetting that mechanism after
an interrupt has occurred, if the architecture of the underlying computing resource requires
such resetting.

3.4 Time Management

Time Management consists of all those portions of the runtime environment that will
support the predefined package CALENDAR and the implementation of delay statements.
If the underlying computing resource offers enough functionality, the support of package
CALENDAR is trivial.

3.5 Exception Management

Exception Management implements Ada semantics for exceptions: that is, it determines
whether there is a matching handler for the exception at hand, and if there is one, it
transfers control to the handler. If there is no matching handler, it invokes the Task
Termination function to terminate the task at hand or the main program.

3.6 Rendezvous Management

Rendezvous Management implements the semantics of the Ada rendez2'ous model. In
order to do so, it utilizes variables that are internal to the runtime environments. These
variables reflect, among other things, which tasks are blocked because they are waiting to
rendezvous with other tasks, and what the exact circumstances of these wait states are. The
rendezvous management function cooperates with the interrupt management function in
the implementation of interrupt rendezvous, if the interrupt rendezvous is supported by the
runtime environment.

3.7 Task Activation

At some point after the task object has been created, the execution of the new task has to
be started. This is effected by the task activation function. This function is invoked by the
creator of a new task in order to start the new task's activation (which is defined as the
execution of the declarative part of the task's body). It may also be invoked by the new task
in order to signal the completion of that task's activation.

3.8 Task Termination

Task Termination implements the set of rules for the completion, termination, and abortion
of tasks.

-9-

Guideline to Select, Configure, and Use an Ada Runtime Environment

3.9 I/O Management

I/O Management consists of all those portions of the runtime environment that are
provided for the support of input and output. This includes in particular all those functions
that support predefined packages from Chapte; 14 of the Ada Reference Manual.

3.10 Commonly Called Code Sequences

Commonly Called Code Sequences is a "catchall" category. It includes runtime routines in
the classical sense: commonly called sequences of code. Typical examples are operation
for multi-word arithmetic, block moves and string operations. Ada attribute calculations
also fall into this category.

3.11 Target Housekeeping Functions

Target Housekeeping Functions are associated with the start up and termination of the
execution environment of an Ada program. Such actions include determination of the
particular hardware and software execution environment, setting of variables identifying
same, processor and interrupt initializations, and so on. Similarly, if a program terminates,
control is typically returned to some surrounding software whose state must be reset upon
program exit.

-10-

Guideline to Select, Configure, and Use an Ada Runtime Environment

4. Bare Machine Targets

There are currently seventy-one validated Ada compilers which generate code for the bare
machine target. These compilers are produced by eighteen vendors.

The information in this chapter will be provided in two formats:

1.) by Target Processor Type (Table I). This section, indexed by processor type,
contains a page reference to Table II, where the detailed information for that
compilation system can be found.

2.) by Compiler Vendor (Table H). This section, indexed by compiler vendor, details
the host/target combination, degree of configurability, PIWG benchmark results,
storage requirements in graphical form, Package SYSTEM, Package STANDARD,
and the vendor responses to pertinent questions that were considered critical to
real-time programming. The information contained in Table II is explained more
fully beginning on page 27.

In addition to the two tables described aboved, chapter 4 contains a brief description of the
PIWG benchmarks (4.1), and a list of vendor contacts (4.2).

-11-

Guideline to Select, Configure, and Use an Ada Runtime Environment

This page intentionally left blank.

-12-

Guideline to Select, Configure, and Use an Ada Runtime Environment

4.1 PIWG Benchmarks

Benchmarks are used as part of the compiler selection process. Therefore, the Performance
Issues Working Group (PIWG) benchmarks are supplied in Table II. The following is a
description of the PIWG benchmarks taken from the PIWG test suite itself.

TEST DESCRIV ION

A000091 DHRYSTONE Benchmark. Contains Ada statements in a
distribution considered representative: 53% assignments, 32%
control statements, 15% procedures, function calls. 100 statements
are dynamically executed. The program is balanced with respect to
the three aspects: statement type, operand type (for simple data
types), and operand access (operand global, local, parameter, or
constant). The combination of these three aspects is balanced only
approximately. All variables have a value assigned to them before
they are used as a source operand.

A000093 WHETSTONE Benchmark. Ada version of the Whetstone
Benchmark Program. Reference: "Computer Journal", February
1976, pages 43-49 for description of benchmark and ALGOL60
version. Note: Procedure POUT is omitted.

C000001 Task create and terminate measurement, with one task, no entries,
when task is in a procedure, using a task type in a package, no select
statement, no loop.

C000002 Task create and terminate time measurement, with one task, no
entries when task is in a procedure, task defined and used in
procedure, no select statement, no loop.

C000003 Task create and terminate measurement. Task is in declare block
of main procedure, one task, no entries, task is in the loop.

D000001 Dynamic array allocation, use and deallocation time measurement.
Dynamic array elaboration, 1000 integers in a procedure, get space
and free it in the procedure on each call.

D000002 Dynamic array elaboration and initialization time measurement,
allocation, imtialization, use and deallocation, 1000 integers
initialized by others greater than o, equal to one.

D000003 Dynamic record allocation, and deallocation time measurement,
elaborating, allocating and deallocating record containing dynamic
array of 1000 integers.

D000004 Dynamic record allocation, and deallocation time measurement,
elaborating, initializing by (Dynamic..Size,(others = > 1)) record
containing a dynamic array of 1000 integers.

-13-

Guideline to Select, Configure, and Use an Ada Runtime Environment

PIWG BENCHMARKS (Continued)

TEST DESCRIPTION

E000001 Time to raise and handle an exception. The exception is defined
locally and handled locally.

E000002 Exception raise and handle timing measurement when exception is
in a procedure in a package.

E000003 Exception raise and handle timing measurement, when exception is
raised nested three deep in procedure calls.

E000004 Exception raise and handle timing measurement, when exception is
nested four deep in procedures.

E000005 Exception raise and handle timing measurement when exception is
in a rendezvous, both the task and the caller must handle the
exception.

F000001 Time to set a boolean flag using a logical equation. A local and a
global integer are compared. compare this test with F000002.

F000002 Time to set a boolean flag using an "if" test. A local and global
integer are compared. Compare this test with F000001.

G000005 TEXTIO.Get an INTEGER from a local string, timing
measurement. Use TEXTIO to convert 1..100 to a string, then use
TEXTJO.GET to get the number back.

G000006 TEXTJO.Get getting a floating point fraction from a local string.
Timing measurement on .001 to .01 range of numbers. Compare,
approximately, to G000005 for INTEGER vs. FLOAT.

H000001 Time to perform standard BOOLEAN operations on arrays of
BOOLEAN. For this test the arrays are PACKED with the pragma
PACK. The operations are performed on the entire array.

H000002 Time to perform standard BOOLEAN operations on arrays of
BOOLEAN. The arrays are not PACKED with pragma PACK. The
operations are performed on the entire array.

H000003 Time to perform standard BOOLEAN operations on arrays of
BOOLEAN. The arrays are PACKED with the pragma PACK. The
operations are performed on components in a loop.

H000004 Time to perform standard BOOLEAN operations on arrays of
BOOLEAN. The arrays are not PACKED with the pragma PACK
The operations are performed on components in a loop.

-14-

Guideline to Select, Configure, and Use an Ada Runtime Environment

PIWG BENCHMARKS (Continued)

TEST DESCRIPTION

H000005 Time to move one INTEGER object to another INTEGER object
using UNCHECKE-CONVERSION. This may be zero with
good optimization.

H000006 Time to move 10 floating point array objects to a 10 component
floating point record using UNCHECKED-CONVERSION.

H000007 The time to store and extract bit fields that are defined b
representation clauses using both BOOLEAN and INTEGER
record components. Consists of twelve accesses, five stores, one
record copy.

LOOOO01 Simple "for" loop time. For I in 1..100 loop. Time is reported for
once through loop.

L000002 Simple "while" loop time. While I is less than or equal to 100 loop.
Time is reported for once through the loop.

L000003 Simple "exit" loop time. Loop I:=I + 1; exit when I greater than
100; end loop; Time is reported for once through the loop.

L000004 Measure the compilers' choice to UNWRAP a small loop of five
iterations when given the pragma OPTIMIZE(Time). An execution
time less than .05 microseconds indicates the unwrap occurred.

L000005 Measure the compilers' choice to UNWRAP a small loop of five
iterations when given the pragrna OPTIMIZE(Space). An
execution speed less than .05 microseconds indicates the unwrap
occurred.

P000001 Procedure call and return time (may be zero in automatic inlining).
Procedure is local with no parameters.

P000002 Procedure call and return time. Procedure is local with no
parameters, when procedure is not inlineable.

P000003 Procedure call and return time measurement. Procedure is in a
separately compiled package. Compare to P000002.

P000004 Procedure call and return time measurement. Procedure is in a
sprely compiled package. Pragma INLINE used. Compare to

PO0005 Procedure call and return time measurement. Procedure is in a
separately compiled package. One parameter, in INTEGER.

-15-

Guideline to Select, Configure, and Use an Ada Runtime Environment

PIWG BENCHMARKS (Continued)

TEST DESCRIPTION

P000006 Procedure call and return time measurement. Procedure is in a
separately compiled package. One parameter, out INTEGER.

P000007 Procedure call and return time measurement. Procedure is in a
separately compiled package. One parameter, in out INTEGER.

P000010 Procedure call and return time measurement. Ten parameters, in
INTEGER. Compare to P000005.

P000011 Procedure call and return time measurement. Twenty parameters,
in INTEGER. Compare to P000005, P000010.

P000012 Procedure call and return time measurement. Ten parameters, in
MY-RECORD, a three component record. Compare with P000010
(discrete vs. composite parameters).

P000013 Procedure call and return time measurement. Twenty composite 'in'
parameters, the composite type is a three component record.

T000001 Minimum rendezvous, entry call and return time measurement. One
task, 1 entry, task inside procedure, no select.

T000002 Task entry call and return time measurement. One task active, one
entry in task, task in a package, no select statement.

T000003 Task entry call and return time measured. Two tasks active, one
entry per task, tasks are in a package. No select statement used.

T000004 Task entry call and return time measured. One task active, two
entries, tasks in a package, using select statement.

T000005 Task entry call and return time measured. Ten tasks active, one
entry per task, tasks in a package, no select statement.

T000006 Task entry call and return time measurement. One task with ten
entries, task in a package, one select statement, compare to
T000005.

T000007 Minimum rendezvous, entry call and return time measurement,
using one task, one entry, and no select statement.

T000008 Measures the average time to pass an integer from a producer task
through a buffer task to a consumer task.

-16-

Guideline to Select, Configure, and Use an Ada Runtime Environment

4.2 Vendor Address Listing

Advanced Computer Techniques Corp. Intermetrics, Inc.
(InterACT) 733 Concord Avenue
16 East 32nd Street Cambridge, Massachusetts 02138
New York New York 10016 (617) 661 - 1840
(212) 696 - 3600

Rational
A1Tech Software Engineering Ltd. 3320 Scott Boulevard
1250 Oakmead Parkway SantaClara, Califo:nia 95054-3197
Suite 210 (408) 496-3600
Sunnyvale California 94086
(408) 720 - 9400 Rockwell International

400 Collins Road North East
Alsys, Inc Cedar Rapids, Iowa 52498
1432 Main Street (319) 395 - 1729
Waltham, MassachusetLs 02154
(617) 890 - 0030 SofTech Inc.

460 Totten Pond Road
CAP Industry Ltd. Waltham, Massachusetts 02154 - 1960
Trafalgar House (617) 890 - 6900
Richfield Avenue
Reading Berkshire RG18QA System Designers Software Inc.
England 101 Main Street
+44 734 508961 Cambridge, Massachusetts 02142

DDC-I, Inc. (617) 499 - 2000

P.O. Box 32220 Tartan Laboratories Inc.
11024 North 28th Drive 461 Melwood Avenue
Suite 200 Pittsburgh, Pennsylvania 15213
Phoenix, Arizona 85064 (412) 621 - 2210
(602) 863 - 6910

TeleSoft, Inc
Digital Equipment Corporation 5959 Cornerstone Court West
40 Old Bolton Road San Diego, California 92121 - 9891
Stow, Massachusetts 01775 (619) 457 - 2700
(617) 496 - 8740

TLD
Gould, Inc. 21235 Hawthorne Boulevard
Computer Systems Division Suite 204
6901West Sunrise Boulevard Torrance, California 90503
P.O. Box 9148 (213) 316 - 1516
Fort Lauderdale, Florida 22210 - 9148
(305) 797 - 5509 Verdix Corporation

Sullyfield Business Park
Harris Corporation 14130- A Sullyfield Circle
2101 West Cyress Creek Road Chantilly, VA 22021
Fort Lauderdale, Florida 33309 (703) 378 - 7600
(305) 974 - 1700

-17-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Table I. Bare Machine Targeted Compilers

(Listed By Target Processor)

The following table is a list of bare machine targeted compilers which are listed in order by
target processor (1750, 80x86, 680x0, 32032, etc.). The table includes the host processor that
the compiler executes on and the vendor who produces the compiler. Listed under each
vendor are reference pages which refers the reader to the proper pages in Table II
concerning the detailed configuration, runtime size, and benchmark information for the
corresponding compiler.

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR

1750A, ECSPO RAID VAX-11/785 Intermetrics, Inc.
simulator CX-04.001 (under VMS 4.2) (Ref. pages 85 - 90)
(bare machine)

1750A, ECSPO RAID MicroVAX II TeleSoft, Inc.
MIL-STD-1750A simulator (under VMS, (Ref pages 174 - 180)
version 4.0 executing version 4.6)
on the host (bare machine)

1750A, Fairchild VAX-11/785 Advanced Computer
9450/1750A (under VMS 4.4) Techniques Corp.in a HP 64000 (Ref. page 219)
workstaion
(bare machine)

1750A, Fairchild F9450 VAX-11/750 Tartan Laboratories, Inc.
(bare machine) (under VMS 4.1) (Ref. pages 162 - 173)

1750A, Fairchild 9450 MicroVAX II Verdix Corp.
under Tektronics (under VMS (Ref. pages 196 - 201)
emulation (bare machine) Version 4.7)

1750A, Ferranti DEC VAX-11/7xx, Systems Designers
Computer System VAX 8xxx, VAX Software, Inc.
100A Station, and (Ref. pages 148 - 149)
(bare machine) MicroVAX series

Derived 8 (under VAX/VMS 4.5
or MicroVMS 4.5)

1750A, Mikros VAX-11/750 Tartan Laboratories, Inc.
MKS1750/SO (bare machine) (under VMS 4.1) (Ref. pages 162 - 173)

1750A, MIL-STD-1750A Rational 1000 Rational
(bare machine) (Ref. pages 91 - 109)

-18-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR

1750A MIL-STD-1750A VAX-11 VMS TLD Systems Ltd.
(bare machine) (Ref. pages 189 - 195)

1750A MIL-STD-1750A HP9000 - 350 TLD Systems Ltd.
(bare machine) (Ref. pages 189 - 195)

1750A MIL-STD-1750A DG AOS/VS TLD Systems Ltd.
(bare machine) (Ref. pages 189 - 195)

1750A, Tektronix 8540A Harris HCX-7 series Harris Corporation
(bare machine) (under HCX/UX, V.2.2) (Ref. page 220)

1750A, Tektronix 8540A Harris H1200 Harris Corporation
(bare machine) (under VOS, 6.1) (Ref. page 220)

1750A, Unisys S 1636- VAX-11/750 Tartan Laboratories, Inc.
MIL-STD-1750A (under VMS 4.1) (Ref pages 162 - 173)
(bare machine)

8086, Intel iSBC 86/05A DEC MicroVAX II DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)

8086, Intel iSBC 86/35 DEC VAX-11/7xx, DDC-I
(bare machine) VAX 8xxxVAX Station, (Ref. pages 65 - 80)
Derived and MicroVAX series

(under VAX/VMS 4.6
or MicroVMS 4.6)

8086, Intel iAPX 8086 VAX-11/780 and SofTech, Inc.
(bare machine) VAX 11/785 (Ref. pages 126 - 147)

(under VAX/VMS 4.5)

8086, Titan SECS 86/20 DEC MicroVAX II DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)

80186, Intel iAPX 80186 VAX-11/780 and Sofech, Inc.
(bare machine) VAX 11/785 (Ref. pages 126 - 147)

(under VAX/VMS 4.5)

80186, Intel iSBC 186/03A DEC MicroVAX II DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)

80186, Intel iSBC 186/03A DEC VAX-11/7xx, DDC-I
(bare machine) VAX 8xxxVAX Station, (Ref. pages 65 - 80)
Derived and MicroVAX series

(under VAX/VMS 4.6
or MicroVMS 4.6)

-19-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR

80286, Intel iAPX 80286 MicroVAX II CAP Industry, Ltd.
protected mode (under MicroVMS 4.6) (Ref. pages 59 - 64)
(bare machine)

80286, Intel iAPX 80286 VAX-11/780 and SofTech, Inc.
real mode VAX 11/785 (Ref. pages 126 - 147)
(bare machine) (under VAX/VMS 4.5)

80286, Intel iAPX 80286 VAX-11/780 and SofTech, Inc.
protected mode VAX 11/785 (Ref. pages 126 - 147)
(bare machine) (under VAX/VMS 4.5)

80286, Intel iSBC 286/14 IBM PC/AT Alsys
(bare machine) (under PC/DOS 3.2) (Ref. pages 36 - 49)

80286, Intel iSBC 286/12 DEC VAX-11/7xx, DDC-I
(bare machine) VAX 8xxxVAX (Ref. pages 65 - 80)
Derived Station, and

MicroVAX series
(under VAX/VMS 4.6
or MicroVMS 4.6)

80286, Intel iSBC 286/12 DEC VAX-11/7xx, DDC-I
Protected mode VAX 8xxxVAX (Ref. pages 65 - 80)
(bare machine) Station, and
Derived MicroVAX series

(under VAX/VMS 4.6
or MicroVMS 4.6)

80286, Titan SECS 286/20 DEC MicroVAX II DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)

80386, Intel 80386 on VAX 8530 (under TeleSoft/Intel
an Intel 386-100 VMS, version 4.6) Corp./TeleLOGIC
board (bare machine) (Ref. page 223)

80386, Intel iAPX 80386 VAX-11/780 and Soffech, Inc.
compatibility mode VAX 11/785 (Ref. pages 126 - 147)
(bare machine) (under VAX/VMS 4.5)

-20-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR

80386, Intel iSBC 386/21 DEC MicroVAX II DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)

80386, Intel iSBC 386/21 DEC VAX-11/7xx, DDC-I
(bare machine) VAX 8xxx, VAX (Ref. pages 65 - 80)
Derived Station, and

MicroVAX series
(under VAX/VMS 4.6
or MicroVMS 4.6)

80386, Intel iSBC 386/21 DEC VAX-11/7xx, DDC-I
Protected mode VAX 8xxxVAX (Ref. pages 65 - 80)
(bare machine) Station, and
Derived MicroVAX series

(under VAX/VMS 4.6
or MicroVMS 4.6)

80386, Intel iSBC 386/20P MicroVAX II Verdix Corp.
using file-server (under MicroVMS, (Ref. pages 202 - 206)
support from the Host Version 4.4)
(bare machine)

80386, Intel iSBC 386/20P MicroVAX II Verdix Corp.
using file-server (under MicroVMS, (Ref. pages 202 - 206)
support from the Host Version 4.7)
(bare machine)

80386, Intel iSBC 386/20 Intel system 320 Verdix Corp.
(bare machine) (under UNIX system (Ref. page 227)

version release 3.0)

80386, Intel iSBC 386/20P VAX 8800, 87000 Verdix Corp.
using file-server 8650, 8600, 8500, (Ref. pages 202 - 206)
support from the Host 8300, 8200
(bare machine) VAX 11/785, 782, 780,

Derived * 750, 730, & MicroVAX II
(under VMS 4.4)

80386, Intel iSBC 386/20P Sequent Symmetry Verdix Corp.
using file-server S-27(under DYNIX, (Ref. page 227)
support from the Host release 3.0)
(bare machine)

80386, Force CPU-386 DEC MicroVAX II DDC-I
VMEbus (under MicroVMS 4.4) (Ref. pages 65 - 80)
(bare machine)

-21-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR

680x0, MC68OxO IBM PC/AT, Compaq 386, Alsys
(bare machine) SUN-3, HP-300, VAX/VMS (Ref. pages 50 - 58)

68000, MC68000/10 DEC VAX-11/7xx, Systems Designers
implemented on VAX 8xxx, VAX Software, Inc.
the MVME 117-3FP Station, and (Ref. page 222)
board (bare machine) MicroVAX series

Derived * (under VAX/VMS 4.5
or MicroVMS 4.5)

68000, MC68000/10 DEC VAX-1l/7xx, Systems Designers
implemented on VAX 8xxx, VAX Software, Inc.
the MVME 117-3FP Station (under VMS 4.6) (Ref. pages 222)
board (bare machine) and MicroVAX Series
* Derived * (under MicroVMS 4.5)

68000, MC68000 Sun Microsystems TeleSoft, Inc.
implemented on a Sun-3/280Workstation (Ref. pages 224 - 226)
Motorola MVME (under Sun UNIX
101 board (bao ; machine) version 4.2, release 3.2)

68000,MC68000 Sun Microsystems TeleSoft, Inc.
implemented on a Sun-3 Workstations, (Ref. pages 224 - 226)
Motorola MVME Models: 260, 180, 160,
101 board 150, 140, 110,75, 60,
(bare machine) 50 and 52 (with soft-
Derived ware floating point);

5OME and 52 + 152A (with
MC68881 FPC) (under Sun
UNIX version 4.2,
Releases 3.2 & 3.4)

68000, MC68000 MicroVAX II TeleSoft, Inc.
implemented on a (under VMS, (Ref. pages 224 - 226)
Motorola MVME version 4.6)
101 board (bare machine)

68000, MC68000 DEC VAX family TeleSoft, Inc.
implemented on a (MicroVAX, VAX station, (Ref. pages 224 - 226)
Motorola MVME VAX server, VAX 8xxx, &
101 board VAX-11 models)
(bare machine) * Derived* (under VMS 4.5 and 4.6)

-22-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR

68010, MC68010, DEC VAX 8600 Systems Designers
implemented on (under VMS 4.5) Software, Inc.
the MVME 117-3FP (Ref. pages 150 - 153)
board (bare machine)

68010, MC68010 Sun Microsystems TeleSoft, Inc.
implemented on a Sun-3/280 Workstation (Ref. pages 224 - 226)
Motorola MVME (under Sun UNIX
117-4 board (bare machine) version 4.2, release 3.2)

68010. MC68010 Sun Microsystems TeleSoft, Inc.
implemented on a Sun-3 Workstations, (Ref. pages 224 - 226)
Motorola MVME Models: 260, 180, 160,
117-4 board 150, 140, 110, 75, 60,
(bare machine) 50 and 52 (with soft-
Derived ware floating point);

5OME and 52 + 152A (with
MC68881 FPC) (under Sun
UNIX version 4.2,
Releases 3.2 & 3.4)

68010, MC68010 MicroVAX II TeleSoft, Inc.
implemented on a (under VMS, (Ref. pages 225 - 226)
Motorola MVME version 4.6)
117-4 board (bare machine)

68010, MC68010 DEC VAX family TeleSoft, Inc.
implemented on a (MicroVAX, VAX station, (Ref. pages 225 - 226)
Motorola MVME VAX server, VAX 8xxx, &
117-4 board VAX-11 models)
(bare machine) (under VMS 4.5 and 4.6)
* Derived*

68010, MC68010 Sun Microsystems TeleSoft, Inc.
implemented on a Sun-3 Workstations, (Ref. pages 225 - 226)
Motorola MVME Models: 260, 180, 160,
133A-20 board 150, 140, 110, 75, 60,
with a MC6881 50 and 52 (with soft-
floating point ware floating point ;
coprocessor 5OME and 52 + 152A (with
(bare machine) MC68881 FPC) (under Sun
derived UNIX version 4.2,

Releases 3.2 & 3.4)

-23-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR

68020, MC68020 Micro VAX II AlTech Software
Motorola MVME 133 board (under MicroVMS v.4.5) Engineering Ltd.
(bare machine) (Ref. pages 28 - 35)

68020, MC68020 Rational 1000 Rational
(bare machine) (Ref. pages 110 - 125)

68020, MC68020, DEC VAX 8600 Systems Designers
implemented on the MVME (under VMS 4.5) Software, Inc.
133 board with a MC68881 (Ref. pages 154 - 161)
floating point coprocessor
(bare machine)

68020, MC68020, DEC VAX-11/7xx Systems Designers
implemented on the VAX 8xxx, VAX Software, Inc.
MVME 133 board with a station, and Micro (Ref. pages 154 - 161)
MC68881 floating point VAX series (under
coprocessor VAX/VMS 4.5 or
(bare machine) MicroVMS 4.5)

68020, MC68020, DEC VAX- 11/7xx Systems Designers
implemented on VAX 8xxx, VAX Software, Inc.
the MVME 133 station (under VMS (Ref. pages 154 - 161)
board with a MC68881 4.6), MicoVAX series
floating point (under MicroVMS 4.5)
coprocessor
(bare machine)

68020, MC68020 DEC VAX family TeleSoft, Inc.
implemented on a Motorola (MicroVAX VU station (Ref. pages 181 - 188)
MVME 133A-20 board with a VAX server. VAX 8xxx
MC68881 floating point models) (under VMS
coprocessor 4.5 and 4.6)

68020, MC68020 MicroVAX H TeleSoft, Inc.
implemented on a Motorola (under VMS 4.6) (Ref. pages 181 - 188)
MVME 133A-20 board with a
MC68881 floating point
coprocessor

-24-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR

68020, MC68020 Sun Microsystems TeleSoft, Inc.
implemented on a Sun-3/280 Workstation (Ref. pages 225 - 226)
Motorola MVME 133-A-20 (under Sun UNIX
board with a MC68881 version 4.2, release 3.2)
floating point coprocessor
(bare machine)

68020, Microbar GBC68020 Sun Microsystems Verdix Corp.
(bare machine) Sun-3/160 (Ref. pages 207 - 218)
using file-server (under Sun UNIX
support from the Host 4.2, Release 3.2)

68020, Microbar MicroVAX II Verdix Corp.
GPC-68020 (under UNIX 4.2 BSD) (Ref. pages 207 - 218)
(bare machine)

68020, Microbar MicroVAX II Verdix Corp.
GPC-68020 (under MicroVMS 4.4) (Ref. pages 207 - 218)(bare machine)

32032, National DB32000 MicroVAX II Verdix Corp.
(NS32032) (bare machine) (under MicroVMS, (Ref. page 228)
using file-server Version 4.4)
support from the Host

32032, National DB32000 VAX 8800, 87000 Verdix Corp.
(NS32032) (bare machine) 8650, 8600, 8500, (Ref. page 228)
using file-server 8300, 8200
support from the Host VAX 11/785, 782,780,
* Derived 750, 730, & MicroVAX II

(under VMS 4.4)

32032, National DB32000 SYS32/20 Verdix Corp.
(NS32032) (bare machine) (under Opus5 (UNIX (Ref. page 228)
using file-server SYS V), release 2.0)
support from the Host

MicroVAX II VAX 8800 Digital Equipment Corp.
(under VAXELN (under VAX/VMS, (Ref. pages 81 - 82)
Toolkit, Version Version 4.7)
3.0 in Combination
with VAXELN Ada,
Version 1.2)

-25-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR

Any of the following All members of the Digital Equipment Corp.
configurations: VAX family: (Ref. pages 81 - 82)
MicroVAX I & 11; MicroVAX I, VAXstation I,
rtVAX 1000; KA620 MicroVAX II, VAXstation II,
(rtVAX 1000 processor VAXstation 2000 (under
board); MicroVAX 3500 & MicroVMS, version 4.7);
3600; VAX-11/730 & 750 MicroVAX 3500 & 3600;
and VAX 8500, 8530, 8550, VAXserver 3500, 3600, &
8700, & 8800 (under 3602; and VAXstation 3200,
VAXELN Toolkit, version 3500 (under VAX/VMS version
3.0 in combination with 4.7A); VAX-11/730, 750, 780,
VAXELN Ada version 1.2) 782, 785, VAX 8200, 8250,
* Derived S 8300, 8350, 8530, 8550, 8600,

8650, 8700, and 8800 (under
VAX/VMS, version 4.7)

CAPS/AAMP VAX-11/8650 Rockwell Int'l.
(bare machine) (under VMS, (Ref. page 221)

Version 4.5)

CAPS/AAMP DEC VAX 8650 Rockwell Int'l.
(bare machine) (under VMS, (Ref. page 221)

Version 4.7)

Gould PowerNode Gould PowerNode Gould, Inc.
Model 6080 Model 9080 (Ref. pages 83 - 84)
or SelConnection) (under UTX/32
bare machine) Version 2.0)

-26-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Table II. Bare Machine Targeted Compilers

The following table is a list of bare machine compilation systems listed in alphabetical order
by vendor. The compiler vendor, host processor, target processor (grouped by machine
family), and compiler version aie presented in a banner heading each new host/target
combination page. Following each banner is the following information:

1.) Degree of Configurability - The survey found in Appendix A was used to obtain this
information. The sources of information were: the compiler vendors, the appropriate
compiler documentation, and users. Item VI. under this section describes the source(s) of
information for the information reported. Some vendors provided a technical summary and
this was incu'aded as appropriate.

2.) PIWG Benchmarks - These benchmarks were included to provide some feeling for the
efficiency of the implementation. Each compiler vendor had their own subset of the PIWG
benchmarks which they supplied as input. A description of the tests can be found in section
4.1. Processor speed and wait-state of the memory is provided to properly compare the
results. Users are encouraged to contact the PIWG directly for the benchmark results of
new compiler releases.

3.) Histogram - This is a graphical display of the runtime component sizes, and most of the
runtime sizing information was supplied by the vendors. Since this information did not
conform to a standard format the data represented on the graphs is displayed in the same
format as it was received it from the vendor. To change this information to conform to a
standard format (see survey in Appendix A) might have resulted in misrepresentation of the
compiler/vendor.

IT SHOULD BE NOTED that it is NOT advisable to compare the different compilers with
just the aid of the graphs themselves. For an accurate overview of each compiler, ALL
documentation provided for a particular compiler must be taken in account.

The graphs DO NOT show inter-dependencies of each component with respect to the other
components. The sizes shown represent each individual component alone and do not take in
account the fact that in order to use one component (component-A), two other components
(components-B & C) might also have to be loaded to make component-A functional. This
obviously adds to the size needed to use the component.

The graphs display maximums (and minimums when supplied) and does not express
granularity of te components. The actual sizes may depend upon the features of the
application code. For example, component-A's maximum size may be 10,000 bytes, but
depending upon the language construct used, only part of the component may be loaded.

The graphics package that was used to draw the graphs scaled the information to fit within a
fixed size window. Therefore, depending on the amnunt of information to be displayed
within this fixed size window, some graphs appear smaller than others. This has nothing to
do with the vendors or their products. It's simply a function of the graphics package used.

4.) Package SYSTEM and Package STANDARD specification, when provided the vendor.

-27-

Guideline to Select, Configure, and Use an Ada Runtime Environment

5.) Response to Critical Questions. As the surveys (see Appendix A) were returned, they
were fine-tuned. A later survey (V2.0, also found in Appendix A), asks the vendors/users to
respond to additional questions that are important to know if one is developing real-time
software. These were limited to 10 questions because a limit had to be placed on the length
of the survey to realistically expect people to answer it. The responses received are
included.

Note that while most compiler vendors were willing to provide at least some of the
requested data, not all responded to the survey. When this was the case, it was so stated.

Finally, a vendor's validation certificate for a particular compilation system remains in
effect for one year. The period of performance for this contract spanned nine months and
during that time some compiler versions became obsolete. The information presented is as
up to date and accurate as possible for the compiler version presented. Because the
implementations are changing so rapidly, it is suggested that a potential customer contact
the vendor for newer release information. However, this report provides a substantial
amount of basic information that probably would not change drastically from release to
release.

-27.1-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

AITech Software VAX/VMS MC68020, Motorola
Engineering Ltd. (bare machine)
Comiler version:

A/020 V2.1

DEGREE OF CONFIGURABILITY

I. Linker Capability:

- Any part of a library unit being required loads the entire unit.

II. Customization of the Runtime:

- By linker switches
- By modifying the source to the entire runtime (after purchasing it)

III. Documentation provided to help user configure runtime:

- This information was not supplied by the vendor.

IV. Services to customize the runtime:

- Provided by AlTech
- Cost: Engineering services are provided, subject to negotiation between the
customer and AlTech.

V. Cost of runtime source code:

- The price of the runtime source code is subject to negotiation.

VI. Source of Information: Vendor Input.

-28-

Guidelines to Select, Configure and Use an Ada Runtime Environment

AITech Systems Ltd. PIWG results for MVME133 board, 68020 + 68881. Clock: 20MHz,
one wait state, and cache enabled.

PIWG Test Description Micro -
Name seconds

COOOO1 Task creation/terminate, task type declared in package. 546.9
C000002 Task creation/terminate, task type declared in rocedure. 550.8
C000003 Task creation/terminate, task type declared in block. 554.7

TO001 Minimum rendezvous, entry call and return. 183.6
T000002 Task entry call and return (one task, one entry). 177.8
T000003 Task entry call and return (two tasks, one entry each). 201.2
T000004 Task entry call and return (one task, two entries). 193.4
T000005 Active entry and return (ten tasks, one entry each). 187.5
T000006 Task entry call and return (one task, ten entries). 226.6
T000007 Minimum rendezvous, entry call and return. 139.6
T000008 Parameter pass from producer task through buffer task to 464.9

Runtime System Overhead Measurements

Measurement Description Micro -
seconds

Interrupt from interrupt signal to first 81
Response Time instruction in the rendezvous body

Interrupt Response from interrupt signal until a user task 67
for Null Rendezvous (the interrupted one or another) is resumed

Rendezvous Initiation from arrival of second partner to first 65
Overhead instruction in the rendezvous body

Rendezvous Termination from end of rendezvous body 77
Overhead until the user task is resumed

Clock Interrupt time spent handling one clock 3.8
Overhead one clock interrupt

Context Switch from last instruction in one user task to "first 44
instruction in another user task (measured on the
statement: delay 0.0;)

-29-

Guidelines to Select, Configure and Use an Ada Runtime Envirornent

Aitech So-Ftware Engneering Ltd,
Host, VAX / VMS

Tar'gett MC68020

400Version, AI-ADA/020 V2.10

3500

3000 CD

C>

U')
2500. CDC

1 000 CD as .U -c

500o

000 CD
o. IAi.- .

0 0- W IA
0)) 0)C) C U CI

> Q))

L 0ur Of AL Copnet CT 2370ye

0 W :3 4J 0 4 0*

IE IA L 30-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

QI: What is the resolution of the clock used for delay statements?
Al: Currently 10 microseconds, but it can be configured to suit the application.

Q2: How long, and for what reasons are interrupts disabled?
A2: Maximum of 100 Microseconds when the RTS is handling some global data structures,
and during context switches.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: The following are rendezvous mechanisms that are highly optimized:

1.) Efficient handling of the select statement.
Special handling of synchronization rendezvous.

3 Very low context switch overhead.

See PIWG results.

Q4: What are the restrictions for representation clauses?
A4: Representation clauses will be supported in the next version.

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
AS: Priority driven preemptive scheduling with optional time slicing among tasks of equal
priority.

Q6: What are the restrictions on pragma INLINE?
A6: Version 2.1 does not support pragma INLINE.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: No.

Q9: What object types are supported by pragma SHARED?
A9: Only scalar objects (integers, real numbers, etc.).

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

- Maximum number of tasks (No limit)
- Task time slice default
- Timer resolution
- Exception trace
- Default stack sizes
- Fast interrupt entry
- Default task priority
- Terminal I/O

-31-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MC68020

package SYSTEM is

type ADDRESS is private;
subtype PRIORITY is INTEGER range 0 .. 23;

-- Priority 0 is reserved for the Null Task
-- Priority 24 is reserved for System Tasks
-- Priorities 25 .. 31 are for interrupts

type NAME is (M68020, M68000);

SYSTEM NAME : constant NAME := M68020;
STORAGE UNIT : constant := 16;
MEMORYSIZE : constant := 2048 * 1024;
MININT : constant := -2_147_483_647 - 1;
MAXINT " : constant := 2_147_483_647;
MAX DIGITS : constant := 18;
MAXMANTISSA : constant := 31;

FINEDELTA : constant := 2#1.0#E-31;

TICK : constant := 0.000_001;

private

type ADDRESS is new LONGINTEGER;

end SYSTEM;

-32-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Description of Package STANDARD for AITech MC68020 Bare Machine Target

Integer Types

Three predefined integer types are implemented, SHORTINTEGER, INTEGER, and
LONGINTEGER.

They have the following attributes:

SHORT INTEGER'FIRST = -128
SHORT INTEGER'LAST = 127
SHORTINTEGER'SIZE = 8

INTEGER'FIRST = -32 768
INTEGER'LAST = 32_767
INTEGER'SIZE = 16

LONGINTEGER'FIRST = -2 147_483_648
LONGINTEGER'LAST = 2147 483_647
LONGINTEGER'SIZE = 32

Floating Point Types

Three predefined floating point types are implemented, SHORTFLOAT, FLOAT,
and LONGFLOAT. They have the following attributes:

SHORT FLOAT'DIGITS - 6
SHORT FLOAT'EPSILON
SHORTFLOAT'FIRST - -16#0.FFFFFF#E32
SHORT FLOAT'LARGE
SHORTFLOAT'LAST - 16#0.FFFFFF#E32
SHORT FLOAT'MACHINE EMAX = 127
SHORT FLOAT'MACHINE_EMIN = -126
SHORT FLOAT'MACHINEMANTISSA = 23
SHORT FLOAT'MACHINE OVERFLOWS = TRUE
SHORT FLOAT'MACHINERADIX = 2
SHORT FLOAT'MACHINE ROUNDS = TRUE
SHORT FLOAT'MANTISSA =
SHORT FLOAT'SAFE EMAX = 125
SHORT FLOAT'SAFE LARGE = 42535275582707704281251401981719740416.0
SHORT FLOAT'SAFE SMALL = 0.1175494350822287507968736537222245677E-37
SHORTFLOAT'SIZE = 32

-33-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for AITech MC68020 Bare Machine Target (Continued)

FLOAT'DIGITS = 15
FLOAT ' EPSILON
FLOAT"FIRST = -16#0.FFFFFFFFFFFFF8#E256
FLOAT' LARGE
FLOAT"LAST = 16#FFFFFFFFFFFFF8#E256
FLOAT'JMACHINEEMAX = 1023
FLOAT'MACHINEEMIN = -1022
FLOAT'MACHINEMANTISSA = 52
FLOAT"MACHINEOVERFLOWS = TRUE
FLOAT'MACHINERADIX = 2
FLOAT'IACHINEROUNDS = TRUE
FLOAT'MANTISSA =
FLOAT'SAFEEMAX = 1021
FLOAT'SAFELARGE = 224711641857789388674147672112637508883611472.0E263
FLOAT'SAFESMALL = 0.2225073858507201383090232717332404064219216E-307
FLOAT'SIZE = 64

LONG FLOAT'DIGITS = 18
LONGFLOAT'EPSILON =
LONGFLOAT'FIRST = -16158503035655503648605529934797844443001542.0E573
LONG FLOAT'LARGE =
LONGFLOAT'LAST = 16158503035655503648605529934797844443001542.0E573
LONG FLOAT'MACHINE EMAX = 16383
LONGFLOAT'MACHINEEMIN = -16382
LONG FLOAT'MACHINEMANTISSA = 63
LONG FLOAT'MACHINEOVERFLOWS = TRUE
LONGFLOAT'MACHINE RADIX = 2
LONGFLOAT'MACHINE ROUNDS = TRUE
LONGFLOAT'MANTISSA =
LONG_FLOAT'SAFE EMAX = 2047
LONGFLOAT'SAFELARGE = 1615850303565550364334980470618644983134.0E573
LONG FLOAT'SAFE SMALL = 0.3094346047382578275480183369971197853892E-616
LONG_FLOAT'SIZE = 80

Fixed Point Types

Three kinds of anonymous predefined fixed point types are implemented,
named SHORT-FIXED, FIXED, and LONG FIXED. Note that these names are
not defined in package STANDARD, but only used here for reference.

8 bits are used for the representation of SHORTFIXED types,
16 bits are used for the representation of FIXED types, and
32 bits are used for the representation of LONGFIXED types.

For each of SHORTFIXED, FIXED and LONGFIXED there exists a virtual
predefined type for each possible value of SMALL. The posible values
of SMALL are the powers of two that are representable by a LONGFLOAT value

-34-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for AITech MC68020 Bare Machine Target (Continued)

The lower and upper bounds of these types are:

lower bound of SHORTFIXED types - -128 * SMALL
upper bound of SHORTFIXED types - 127 * SMALL
lower bound of FIXED types = -32 768 * SMALL
upper bound of FIXED types 32767 * SMALL
lower bound of LONGFIXED types = -2_147_483_648 * SMALL
upper bound of LONGFIXED types - 2147_483_647 * SMALL

A user defined fixed point type is represented as that predefined
SHORTFIXED, FIXED, or LONGFIXED type which has the largest value
of SMALL not greater than the user-specified DELTA, and which has
the smallest range that includes the user-specified range.

Any fixed point typeT has the following attributes:

T'MACHINE OVERFLOWS = TRUE
T'MACHINEROUNDS = TRUE

The Type DURATION

The predefined fixed point type DURATION has the following attributes:

DURATION'AFT = 5
DURATION'DELTA = DURATION'SMALL
DURATION'FIRST = -131_072.00000
DURATION'FORE = 7
DURATION'LARGE = 1.31071999938965E05
DURATION'LAST = 131_071.00000
DURATION'MANTISSA = 31
DURATION'SAFELARGE = 1.31071999938965E05
DURATION'SAFE SMALL = DURATION'SMALL
DURATION'SIZE = 32
DURATION'SMALL = 6.10351562500000E-05 = 2#1.0#E-14

-35-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Alsys IBM PC/AT 80286, Intel iSBC 286/14
Compiler version 3.21 (under PC/DOS 3.2) (bare machine)

DEGREE OF CONFIGURABILITY

I. Linker Capability:

- Subprograms are loaded if used. Package data is always loaded if the package is in a
context clause.

II. Customization of the Runtime:

- By the use of compiler switches.
- By linker switches.
- Modifying/Replai the source to selective runtime routines provided with the
purchase of the compiler (i.e. Device Drivers).
- By modifying the source to the entire runtime (after purchasing it).

The target runtime system for the cross-compiler consists of the following sections:

Ada Runtime Executive - performs various high-level services (e.g., exception and
interrupt handling). For typical operating system functions, the executive invokes the
Bare-Machine Kernel. The Ada Runtime Executive is provided by Alsys.

Bare-Machine Kernel - invokes the Hardware Interface to perform any operations
specific to the particular hardware in the system. The Bare-Machine Kernel is
provided by Alsys.

Hardware Interface - is the interface to the specific hardware in the system. It is
unique to each specific system and must therefore be supplied by the user. The user
must provide configuration routines, configuration parameters and configuration
tables. These are written in assembly language. They are linked into the runtime
system.

Hardware Setup - contains the following routines and configuration parameters
for performing hardware housekeeping operations of the system.

Configuration Routines:

An initialization routine which is used to initialize the peripheral chips on
the board and install any specialized interrupt handlers.

A routine to return the processor to real mode.

-36-

Guidelines to Select, Configure and Use an Ada Runtime Environment

A routine to perform any necessary cleanup of the hardware or operating
environment and return control to the operating system.
A routine to return in the DX:AX register pair the 32 bit address of the
end of the memory area reserved for the heap.

Configuration Parameters:

The keyboard (or serial input channel) interrupt number.

The timer interrupt number (level).

The frequency at which the timer interrupts occur.

XON/XOFF protocol specification.

Input and Output Routines:

A routine to handle keyboard interrupts. It collects the incoming character and
- clears the interrupt from the interrupting device.

A routine to write a character to the console output device.

A routine to handle timer interrupts. It updates the real-time clock and clears
the interrupt from the interrupting device.

Device Drivers -perform the various input/output functions. They are unique to each
specific system and must therefore be supplied by the user. The user must provide
configuration routines, configuration parameters and confiuration tables. These are
written in assembly language. They are linked into the runtime system.

Configuration Tables:

A table which contains the list of names corresponding to the devices in
the system.

A table which contains a list of 16-bit values, one for each device in the
above table. Each value specifies whether the corresponding device is
the console input, console output, some other device, or a file.

A table containing the names of initialization routines, one for each
device.

A table containing the names of necessary cleanup routines (such as
flushing buffers), one for each device.

A table containing the names of routines which allow the user to
maintain a file position so that direct I/O could be performed on the
device, one for each device.

-37-

Guidelines to Select, Configure and Use an Ada Runtime Environment

A table containing the names of routines which allow a sequence of
characters to be sent to the device, one for each device.

Configuration Routines:

A procedure must be specified for each routine named in the above
tables.

Useful External Routines - These routines are provided for use in the Hardware
Interface and Device Specifications.

A routine to put a character into the input buffer so that it can be fetched by
the Ada program.

A routine to update the real-time clock.

A routine to get a character from the console-input device.

A routine to output a character to the console-output device.

A routine which will cause the program to be restarted (start of the bare-
machine kernel).

Tools:

The Intel 8086 toolset is used, namely: ASM86, LINK86, LOC86, LIB86.

Transfer Tools - A tool which allows cross loading.

80x86AdaProbe - cross debugging version of AdaProbe. It is an IBM PC
AT-hosted program viewer/debugger that works with other components of the
cross-compiler to debug code that executes on any Intel i80x86-family
processor.

It supports all three execution modes provided by the cross-compiler:

- In cross mode the code executes on a remote target with no operating
system. 80x86 AdaProbe runs on the host, communicating with the target
over a serial link or equivalent.

- In simulated mode the code executes on the host machine but without
making any calls to the operating system.

- In native mode the code runs on the host taking full advantage of DOS
and BIOS.

-38-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Technical Summary for Alsys Cross Compilation Systems for Intel 80x86 (V. 3.21)

Aos-s provides a document titled 'Technical Summary for Alsys Cross Compilation Systems
for Intel 80x86 (version 3.21)", dated July 11, 1988. [16] It's purpose is to aid prospective
purchasers of Alsys cross compilation systems for Intel 80x86 microprocessors in their
evaluations of the technical characteristics of the products. It addresses the more common
concerns of real-time and embedded applications developers when selecting an Ada
compilation system. Following is an index of the information contained in it.

A. Components & Applicabiliy of Product.
1. Compilation System Components.
2. Documentation Set.
3. Available Hosts.
4. Supported Targets.
5. Software and Hardware Requirements.
6. Validation Status.

B. Compilation System.
1. Capacities & Robustness.
2. Speed/Throughput.
3. Library Facilities.
4. Code Quality.
5. Error Messages.
6. Ease of Use, Convenience, Flexibility.
7. Implementation Dependent Features.
8. Target Specific Features.
9. Optimizations.

C. Runtime System.
1. Capacities and Robustness.
2. Performance/Resource Usage.
3. Configurability Support.
4. Tailorability.
5. Extensions.
6. Source Code Availability & Implementation Language.
7. Certifiability.
8. Features.

D. Development Tools.
1. Debugger Support.
2. Profiler.
3. Support for Logic Analyzers and Emulators Independent of Debugger.
4. Cross Referencer.
5. Source Formatter.
6. Language Sensitive Editor.
7. Source Configuration Control.
8. Communications Support.
9. Test Case Generators.
10. Support for Development of Independent Tools.

E. Documentation.

-39-

Guidelines to Select, Configure and Use an Ada Runtime Environment

1. Use of System.
2. Implementation Dependencies.
3. Coifigurability.
4. Installation Guide.
5. Project Development Guide.
6. Command Reference.
7. Index.
8. Applications Development Guide (tips, etc.).
9. Runtime System Guide.
10. Bug Lists.
11. Change Bars on Succeeding Revisions.

The following excerpts are from the section titled "Runtime System".

1. Capacities and robustness.

a. Max active tasks. Bounded by available memory. Task representation is approximatel;
160 bytes, plus 500 bytes stack overflow buffer, plus the designated task stack size.
Programs have been executed with 500 simultaneously active tasks.

2. Performance/resource usage.

a PIWGs and other benchmarks. Can be found following this section.

b. Size The size of tbe runtime environment varies from approximately 14 K bytes to 28K
bytes, depending on features used.

3. Configurability support. The compilation system offers comprehensive configurability
support. Configuration customization of the runtime environment is effected via
configuration files and user defined hook routines. The areas under user control include:

- Size and location of the Ada heap for dynamic memory management.
- Designation of default task stack size.
- User supplied routines to initialize and handle the timer, and designation of its
period (the effective TICK of the application).
- Facilities for integrating I/O devices.

4. Tailorability. One aspect of tailorability, aside from the configuration facilities listed
above, is that the system supports unused subprogram elimination for both user and RTE
code.

5. Extensions. No runtime environment extensions are currently implemented.

6. Source code availability & implementation language. The compiler and a large part of
the RTE are implemented in Ada. Some portions of the RTE are implemented in assembly
language.

Source code for the RTE is available through a separate arrangement (AlsysARTE).

7. Certifiability. Alsys is willing to enter into special arrangements should a project require
special certification of portions of the RTE.

-40-

Guidelines to Select, Configure and Use an Ada Runtime Environment

8. Features.

a. Interrupt support. Not supported in this release, but will be available beginning
November 1988.

b. Scheduler Characteristics.

1) Preemptive The scheduler is fully preemptive and interrupt driven. Scheduling
actions are load-insensitive: the number of simultaneously active tasks does not affect
the time to perform scheduling actions.

2) Priority levels & treatment of undefined priority. Priorities may be defined in the
range 1 .. 16. An undefined priority is considered to be lower than any defined value.

3) Consideration of hardware interrupt priority levels. Interrupt entries may have up to 8
priority levels beyond type System.Priority.

4) Tune slicing. Time slicing may be set via a binder command option. Granularity for
specifying the quantum is 1 millisecond.

S) Support for rate monotonic scheduling. Rate monotonic scheduling is not
implemented in the current version.

6) Load sensitivity. All scheduling and inter-task operations are load insensitive. They
are not affected by the number of simultaneously active tasks.

7) Deadlock or permanent blocking detection & support for actions on same. When the
RTE detects a permanent blocking situation, it terminates the application by
transferring control to the user written termination hook.

c. Time support.

1) Clock resolution. Clock resolution is determined by the user definition of the basic
real-time clock period.

2) DURATION characteristics.

DURATION'DELTA = .001 seconds
DURATION'SMALL = 2**-10 seconds
DURATION'FIRST = -2-097-152.0 seconds
DURATION'LAST = DURATION'LARGE = 2.-097-151.999 seconds

3) TICK SYSTEM.TICK = 1/18 seconds, but is unused. The effective TICK is
designated by the application builder in the configuration file.

4) Clock call overhead. Not currently determined.

5) Typical time to reschedule when highest priority task times out. On the order of 80
microseconds on an 8 MHz, 0 wait state 80286.

6) Time operations overhead. Not currently measured.

-41-

Guidelines to Select, Configure and Use an Ada Runtime Environment

7) Configurability. As described in the configurability section, the user designates the
basic period of the real-time clock used to drive all time based operations. The user
also provides timer initialization and interrupt handler routines, as well as
initialization of date and time.

d Dynamic memory management approach.

Several classes of objects are allocated on the heap. These include objects created by the
execution of an Ada allocator, task stacks, arbitrarily large objects and compiler generated
temporaries. Special representations within the heap are used when objects are 32 bits or
smaller, and when dynamic objects have global scope.

When an access type is defined in a task or subprogram, all objects of the type are
automatically deallocated when the scope defining the type is exited. This implementation
has the same effect as explicitly applying pragma CONTROLLED to each access type in the
application. Compiler generate temporaries are reclaimed as soon as they are no longer
needed. A task's stack is reclaimed as soon as the task terminates.
UNCHECKEDJDEALLOCATION reclaims an access object immediately.

In order to provide better management of stacks and global data areas, which are currently
limited to 64 K bytes each, binder options are provided to set threshold values for the
maximum size objects to be allocated m each of these areas. If an object is larger than the
pertinent threshold value, it is allocated on the heap instead.

e. Exception management approach.

The exception management implementation follows the philosophy described in the Ada
Rationale document, which considers exceptions to be exceptional, and not a normal
method for transferring flow of control. The language designers felt that there should be no
overhead at subprogram linkage related to exception management. Alsys has followed this
philosophy by using a table driven, interpretive approach to exception management, which
does not penalize subprogram linkage sequences for the possibility of an exception being
raised.

f Supportfor multiprocessor configurations.

There is no explicit support for multiprocessor configurations in the current release, but it is
possible to build systems with stand-alone Ada programs on each processor which
communicate with each other.

g. Support for multiprogramming.

There is no explicit support for multiprogramming in the current release, but it should be
possible for a user to build such a system, provided that careful attention is given to correct
setup of interrupt vectors.

h. Rendezvous implementation.

The rendezvous implementation uses the "naive" approach to execution of accept bodies:
on the stack of the callee, executed by the callee. This approach requires less overhead for
nested rendezvous implementation than alternative approaches.

-42-

Guidelines to Select, Configure and Use an Ada Runtime Environment

The synchronization rendezvous case, where there is an empty statement list for the accept
body, is optimized and involves no context switches.

The selective wait statement is made reasonably "fair" in selection of among multiple open
entries by varying the starting point for processing of open alternatives for selection.

Rendezvous algorithms are load-insensitive: they do not depend on the number of active
tasks.

III. Documentation provided to help user conigure runtime:

- As part of a standard product: Cross Development Guide
- As RTE technology transfer (ALSYARTE), all design documentation, a week long
course and consulting services.

IV. Services to customize the runtime:

- Not for particular applications, but Alsys occasionally does custom work for projects
of gufficient scope.

V. Cost of runtime source code:

- Approximately $250,000, but it is dependent upon the specific situation.

VI. Source of Information: Vendor input and relevant compiler documentation supplied by
the vendor.

-43-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for iSBC286. Clock : 8MHz, iSBC286/12, Multibus I, zero wait-states
(tests were compiled with Checks off, Optimizations on). PIWG test suite 1987.
PIWG Test Description Micro -
Name seconds

A000093 Whetstone benchmarks* 160**

C000001 Task creation/terminate, task type declared in package. 1747.1
C000002 Task creation/terminate, task type declared in procedure. 1912.5
C000003 Task creation/terminate, task type declared in block. 1734.3

D000001 Dynamic array, use and deallocation. 116.4
D000002 Dynamic array elaboration and initialization. 7200.9
D000003 Dynamic record allocation and deallocation. 150.8
D000004 Dynamic record elaboration and initialization. 7598.9

E000001 Raise and handle an exception locally. 374.2
E000002 - Raise and handle an exception in a package. 732.0
E000004 Raise and handle an exception nested 4 deep in procedures. 1289.2

F000001 Set a BOOLEAN flag using a logical equation. 3.6
F000002 Set a BOOLEAN flag using an "if" test. 4.1

G000005 TEXTIO.Get an INTEGER from a local string. 540.8
G000006 TEXTJO.Get a FLOAT from a local string. 1850.0

LOOOO01 Simple "for" loop. 3.9
L000002 Simple "while" loop. 3.9
L000003 Simple "exit" loop. 3.9

P000001 Procedure call and return inlineable), no parameters. 0.0
P000002 Procedure call and return not inlineable), no parameters. 4.8
P000003 Procedure call and return compiled separately). 6.0
P000004 Procedure call and return Pragma INLINE used). 0.0
P000005 Procedure call and return one parameter, in INTEGER. 6.6
P000006 Procedure call and return one parameter, out INTEGER). 7.5
P000007 Procedure call and return one parameter, in out INTEGER). 7.5
P000010 Procedure call and return ten parameters, in INTEGER. 16.4
P000011 Procedure call and return twenty parameters, in INTEGER). 26.0
P000012 Procedure call and return ten parameters, in record-type). 29.1
P000013 Procedure call and return twenty parameters, in recorcLtype). 52.0

T000001 Minimum rendezvous, entry call and return. 416.4
T000002 Task entry call and return (one task, one entry). 411.7
T000003 Task entry call and return (two tasks, one entry each). 417.6

-44-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for iSBC286 (continued). Clock: 8MHz, iSBC286/12, Multibus I, zero
wait-states (tests were compiled with Checks off, Optimizations on). PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

T000004 Task entry call and return (one task, two entries). 741.4
T000005 Active entry and return (ten tasks, one entry each). 411.9
T000006 Task entry call and return (one task, ten entries). 1905.3
T000007 Minimum rendezvous, entry call and return. 253.9

Using standard internal math routines.
8 WHETSTONE: units are in KWIPS not in microseconds.

-45-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys, Inc.
Host' PC / AT

Target' Intel 80x86
Version' 3.2

CD

32,500 Mn cv

30,530

3500 CU
c.)

3000
C1

2500 N CU

0% CU
2000 C D.

1500 0 -

--o-- - _ 0 7

N .001

o 03) 0) 03) 0) 4" + 03) u (0. In C -, z z > d z C =
0 CD 0

L i.9C I> . D CD C, D - Zo . .0 0

In ~ , .F o ~ D U)~ ID

U0 4-1 u 4J +; . W. 0) UN o Io +' E r r En W) E, . 0) X
C. 0) C) 0). 0 U O0 W a

0.. '- 0, I- .0 0

>, Q0
u L W d .

$A 0.

Sur of ALL coiponents = 14,650 - 79,930

SCoimponent w~s supplied by vendor.,

*m Cormponent supplied by vendor, see next page for detwlts

-46-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Vendor supplied component description

The minimum RTE including data is 14,650 bytes. The maximum RTE, including
instantiations of all I/O packages and use of all possible RTE functions and I/O routines is
79,930 bytes.

A typical contribution of the RTE with usual I/O:
No tasking: approximately 22,000 - 24,000 bytes.
Tasking: approximately 25,000 - 30,000 bytes.

Processor 1. No tasking - 0 bytes;
Management 2. Tasking - 1900 bytes.

Interrupt 1. No tasking - 0 bytes.
Management 2. Tasking component not used - 600 bytes.

3. Tasking used (maximum) - 700 bytes.

Time 1. Calender not in context clause, no tasking - 0 bytes.
Management 2. Calender in context but not called, no tasking - 200 bytes.

3. Calender in context clause (maximum) - 2,500 bytes.
4. Tasking timer component - 1,200 bytes.

Exception Always present - 1000 bytes.
Management

Rendezvous 1. No tasking - 0 bytes.
Management 2. Tasking, rendezvous not used - 100 bytes.

3. Tasking, all types used (maximum) - 3,200 bytes.

Task 1. No tasking - 0 bytes
Activation 2. At least one task defined - 1,200 bytes.

Task 1. Abort not used - 0 bytes.
Termination 2. Abort used - 600 bytes.

3. Dependency maintenance - 2,000 - 2,100 bytes.

I/O Management:

Subcomponent Not in context In context, not used, Maximum (all
instantiated routines called)

TextJO 0 bytes 2400 bytes 25,800 bytes
IO._Exceptions 0 bytes 30 bytes 30 bytes
Direct..JO 0 bytes 200 bytes 2,800 bytes
Sequential..O 0 bytes 200 bytes 1,900 bytes

C.C.C. Sequences Arithmetic and block moves 1,200 - 1,500 bytes.

Miscellaneous category is additional to the above components, but implements some of the
above functionality (including I/O, memory management, exception handling, tasking, etc.)

-47-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

As surveys were returned, the original survey was fine-tuned based on comments received
(see Survey, V. 2, in Ap endix A). It was decided to comprise a list of ten important issues
the user should obtain te answers to before selecting a compilation system for a particular
application. Below are questions asked and answers received for this implementation.

Q1: What is the resolution of the clock used for delay statements?
Al: User configured.

Q2: How long, and for what reasons are interrupts disabled?
A2: Interrupts are only disabled in user written interrupt service routines.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: Based upon past implementations using Habermann-Nassi and Order of Arrival
schemes for rendezvous execution, Alsys has abandoned these "optimizations" because they
incur too much bookkeeping overhead. Accept bodies with empty statement lists are
optimized tQ avoid context switching.

Q4: What are the restrictions for representation clauses?
A4: All representation clauses are currently supported to the byte level, except:

- bit level representation clauses (V4.1)
- pragma PACK (V4.1)
- change of representation for derived record types
- T'SIZE for types declared in a generic unit
- T'SMALL for fixed point types must be a power of 2, and the absolute value of the
exponent must be less than 31
- enumeration clauses are not allowed if there is a range constraint on the parent
subtype
- address representation clauses (the ADDRESS attribute is fully supported).
- the STORAGE-SIZE representation clause for reserving memory for task
activation.

05: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
A5: Preemptive, round-robin within priority level. Time slicing, under user control.

Q6: What are the restrictions on pragma INLINE?
A6: No direct or indirect recursion.

Q7: Is code "ROM"able?
A7: Yes, code, constants and initial values for global variables.

Q8: Are machine code inserts supported?
A8: No.

-48-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Q9: What object types are supported by pragma SHARED?
A9: Scalars.

Q10: What items are configurable for the runtime system?
A10: The items listed below are configurable for the runtime system.

- Max. No. of Tasks
- Task Time Slice Default
- Timer Resolution
- Exception Trace
- Default Stack Sizes
- Terminal I/O
- Optional Numeric Co-processor

Also see Technical Summary preceding this section.

-49-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Alsys Apollo, IBM PC/AT, MC68OxO
Compiler version 3.5 Compaq 386, SUN-3, (bare machine)

HP-300, VAX/VMS

DEGREE OF CONFIGURABILITY

I. Linker Capability:

Any part of a library unit being required loads the entire unit. This changes with
Version 4.2, October 1988.

II. Customizition of the Runtime:

- By the use of compiler switches.
- By linker switches.
- Modifying/Replacing the source to selective runtime routines provided with the
purchase of the compiler (i.e. Device Drivers).
- By modifying the source to the entire runtime (after purchasing it).

Technical Summary for Alsys Cross Compilation Systems for Motorola M68OxO (V. 3.5)

Alsys provides a document titled 'Technical Summary for Alsys Cross Compilation Systems
for Motorola M68OxO (version 3.5)", dated July 11, 1988. [17] It's purpose is to aid
prospective purchasers of Alsys cross compilation systems for Motorola M680xO
microprocessors in their evaluations of the technical characteristics of the products. It
addresses the more common concerns of real-time and embedded applications developers
when selecting an Ada compilation system. Following is an index of the information
contained in it.

A. Components & Applicability of Product.
1. Compilation System Components.
2. Documentation Set.
3. Available Hosts.
4. Supported Targets.
5. Software and Hardware Requirements.
6. Validation Status.

B. Compilation System.

-50-

Guidelines to Select, Configure and Use an Ada Runtime Environment

1. Capacities & Robustness.
2. Speed/Throughput.
3. library Facilities.
4. Code Quality.
5. Error Messages.
6. Ease of Use, Convenience, Flexibility.
7. Implementation Dependent Features.
8. Target Specific Features.
9. Optimizations.

C. Runtime System.
1. Capacities and Robustness.
2. Performance/Resource Usage.
3. Configurability Support.
4. Tailorability.
5. Extensions.
6. Source Code Availability & Implementation Language.
7. Certiflability.
8. Features.

D. Development Tools.
1. Debugger Support.
2. Profiler.
3. Support for Logic Analyzers and Emulators Independent of Debugger.
4. Cross Referencer.
5. Source Formatter.
6. Language Sensitive Editor.
7. Source Configuration Control.
8. Communications Support.
9. Test Case Generators.
10. Support for Development of Independent Tools.

E. Documentation.
1. Use of System.
2. Implementation Dependencies.
3. Configurability.
4. Installation Guide.
5. Project Development Guide.
6. Command Reference.
7. Index.
8. Applications Development Guide (tips, etc.).
9. Runtime System Guide.
10. Bug Lists.
11. Change Bars on Succeeding Revisions.

The following are excerpts from the section titled "Runtime System".

1. Capacities and robustness.

a. Max active tasks. For VRTX and VRTX32 (Ready Systems' real-time executives) it is 255.
For ARTK (Alsys' real-time executive), as bounded by available memory.

2. Performance/resource usage.

-51-

Guidelines to Select, Configure and Use an Ada Runtime Environment

a. PIWGs and other benchmarks. See following pages.

b. Size The runtime environment size is approximately 36 K Bytes in the current version.
Further reductions will be implemented in V4. 1.

3. Configurability support.

The compilation system offers comprehensive configurability support. Configuration
customization of the runtime environment is effected via configuration files and user
defined hook routines. The areas under user control include:

- Size and location of the Ada heap for dynamic memory management.
- Designation of default task stack size and interrupt stack size.
- Designation of maximum number of interrupts allowed to be simultaneously active
or pending, and the maximum number of Ada interrupt entries defined over a
program. These values are used to tailor internal data structures of the RTE.
- User supplied routines to initialize and handle the timer, and designation of its
period (the effective TICK of the application).
- Facilities for integrating I/O devices.

4. Tailorability. Another aspect of tailorability, aside from the configuration facilities listed
above, is that the Ada binder selects between a tasking and non-tasking runtime
environment based upon the presence of tasking constructs in the application. V4.1 will
support unused subprogram elimination for both user and RTE code.

S. Extensions. Package USER.O is supported under ARTK. As an alternative to the
address clause method of specifying interrupt entries, package INTERRUPT-HANDLER
is provided. This package supports designation of the persistence of interrupts, and the use
of a parameter.

6. Source code availability & implementation language. The compiler and a large part of
the RTE are implemented in Ada. Some portions of the RTE are implemented in assembly
language.

Source code for the RTE is available through a separate arrangement (AlsysARTE).

7. Certifiability. Alsys is willing to enter into special arrangements should a project require
special certification of portions of the RTE.

8. Features.

a. Interrupt support.

1) Timing. Interrupt entries have roughly 150 microseconds overhead associated with
them on a 20 MHz 68020.

2) Latency. Not yet measured for ARTK, but initial estimates of the maximum are in
the range of 20 - 30 microseconds under certain infrequent conditions.

Ready Systems publish their interrupt latency figures for VRTX and VRTX32.

-52-

Guidelines to Select, Configure and Use an Ada Runtime Environment

3) Fast Interrupts. The system does not currently implement a special "fast interrupt"

pragma, but note the time for interrupt entry rendezvous in 1) above.

4) Types supported (e.g. persistence). The system supports both persistent
(unconditional) and nonpersistent (conditional) interrupts. Interrupt entries are
executed as special software priority levels corresponding to the hardware priority
level of the particular interrupt.

5) Parameter support. Parameters are not supported when using the address clause
mechanism for interrupt entries. A single parameter of mode in, of discrete or access
type, is supported when using the alternative package INTERRUPTJHANDLER
mechanism.

b. Scheduler Characteristics.

1) Preemptive. The scheduler is fully preemptive and interrupt driven. Scheduling
actions are load-insensitive under VRTX32 and ARM the number of
simultaneously active tasks does not affect the time to perform scheduling actions.

2) Priority levels & treatment of undefined priority..

For ARTK, 24 user definable priority levels are available. The undefined priority
value is considered to be less than any defined priority. Seven software priority levels
are reserved for interrupt servicing. (See next section).

For VRTX and VTX32, users may define priorities in the range 1..248 for Ada tasks.
Priorities 249 .. 255 are reserved for interrupt entries as described in the next section.
Undefined priority is lower than any defined priority.

3) Consideration of hardware interrupt priority levels.

Under ARTK seven priority levels (25-31) are reserved for interrupt entry processing.
Each level corresponds to a hardware interrupt level. Note that execution of accept
bodies for interrupt entries does not take place at the hardware interrupt level,
because interrupts are not disabled during execution of an accept body. A task
executing an interrupt entry may be preempted by another task executing an interrupt
entry for an interrupt at a higher hardware interrupt level.

An analogous scheme is used for VRTX and VRTX32, using priority values 249 -255.

4) Time slicing. Time slicing will be implemented for ARTK in V4.1

Time slicing is currently implemented for VRTX and VRTX32.

5) Support for rate monotonic scheduling. Rate monotonic scheduling is not
implemented in the current version.

6) Load sensitivity. All scheduling and inter-task operations are load insensitive for
VRTX32 and ARTK. They are not affected by the number of simultaneously active
tasks.

-53-

Guidelines to Select, Configure and Use an Ada Runtime Environment

7) Deadlock or permanent blocking detection & support for actions on same. Not
supported when interrupt entries are used in the application.

c. Time support.

1) Clock resolution. Clock resolution is determined by the user definition of the basic
real-time clock period.

2) DURATION characteristics.

Type DURATION is delta 2.0*(-14) range -86-400.00.. 86-400.0;

3) TICK TICK has the value 1.0, but is unused. The effective TICK is designated by the
application builder in the configuration file.

4) Clock call overhead. 68 microseconds, for a 12 MHz, VME130 with 4 wait-states.

5) Typical time to reschedule when highest priority task times out. On the order of 30-40
microseconds.

6) Time operations overhead. Not currently measured.

7) Configurability. As described in the configu rability section, the user designates the
basic period of the real-time clock used to drive all time based operations. The user
also provides timer initialization and interrupt handler routines, as well as
initialization of date and time.

d. Dynamic memory management approach.

Several classes of objects are allocated on the heap. These include objects created by the
execution of an Ada allocator, task stacks, arbitrarily large objects and compiler generated
temporaries. Special representations within the heap are used when objects are 32 bits or
smaller, and when dynamic objects have global scope.

When an access type is defined in a task or subprogram, all objects of the type are
automatically deallocated when the scope defining the type is exited. This implementation
has the same effect as explicitly applying pragma CONTROLLED to each access type in the
application. Compiler generatedtemporaries are reclaimed as soon as they are no longer
needed. A task's stack is reclaimed as soon as the task terminates.
UNCHECKEDDEALLOCATION reclaims an access object immediately.

e. Exception management approach..

The exception management implementation follows the philosophy described in the Ada
Rationale document, which considers exc, ,tions to be exceptional, and not a normal
method for transferring flow of control. The ianguage designers felt that there should be no
overhead at subprogram linkage related to exception management. Alsys has followed this
philosophy by using a table driven, interpretive approach to exception management, which
does not penalize subprogram linkage sequences for the possibility of an exception being
raised.

-54-

Guidelines to Select, Configure and Use an Ada Runtime Environment

f Support for multiprocessor configurations.

There is no explicit support for multiprocessor configurations in the current release, but it is
possible to build program per processor systems.

g. Support for multiprogramming.

There is no explicit support for multiprogramming in the current release, but it should be
possible for a user to build such a system, provided that careful attention is given to correct
setup of interrupt vectors.

h. Rendezvous implementation..

The rendezvous implementation uses the "naive" approach to execution of accept bodies:
on the stack of the callee, executed by the callee. This approach requires less overhead for
nested rendezvous implementation than alternative approaches. Parameters are always
passed in a parameter area, and are never copied into the context of the accept body.

The synchronization rendezvous case, where there is an empty statement list for the accept
body, is optimized and involves no context switches, unless the tasks are of unequal priority.

The selective wait statement is made reasonably "fair" in selection of among multiple open
entries by varying the starting point for processing of open alternatives for selection.

Rendezvous algorithms are load-insensitive: they do not depend on the number of active
tasks.

III. Documentation provided to help user configure runtime:

For off-the-shelf product, Cross Development Guide As technology transfer, full
design documentation, 1 week training course and, consultant services.

IV. Services to customize the runtime:

No.

V. Cost of runtime source code:

Approximately $250,000.00, but it depends upon the specific situation.

VI. Source of Information: Vendor input and relevant compiler documentation supplied by
the vendor.

-55-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for MVME 133A.
Clock: 20MHz, M68020, 1 Megabyte on board DRAM: 32 bit address and data access;
1 wait state. Checks ON, Optimizations ON, Timer configured to 1024 Hz TICK.
PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

A000091 Dhrystone 334
A000092 Whetstone benchmarks, using manufacturer's math routines 558*
A000093 Whetstone benchmarks, using standard math routines 310*

C000001 Task creation/terminate, task type declared in package. 1372.8
C000002 Task creation/terminate, task type declared in procedure. 1457.3
C000003 Task creation/terminate, task type declared in block. 1450.6

D000001 Dynamic array, use and deallocation. 8.1
D000002 Dynamic array elaboration and initialization. 6034.0
D000003 Dynamic record allocation and deallocation. 38.5
D000004 Dynamic record elaboration and initialization. 9456.1

E000001 Raise and handle an exception locally. 1044.4
E000002 Raise and handle an exception in a package. 318R;7
E000003 Raise and handle an exception nested 3 deep in procedures. 5554.6
E000004 Raise and handle an exception nested 4 deep in procedures. 6242.8
E000005 Raise and handle an exception in a rendezvous. 10098.5

F000001 Set a BOOLEAN flag using a logical equation. 4.8
F000002 Set a BOOLEAN flag using an "if" test. 5.2

G000005 TEXT IO.Get an INTEGER from a local string. 334.2
G000006 TEXTIO.Get a FLOAT from a local string. 1822.6

H000001 BOOLEAN operations on entire PACKed array. 41.8
H000002 BOOLEAN operations on entire array (not packed). 41.8
H000003 BOOLEAN operations on components of a PACKed array. 235.1
H000004 BOOLEAN operations on components of an array (not packed). 235.1
H000005 Move INTEGER to INTEGER (Unchecked Conversion). 4.0
H000006 Move array of 10 Floats to record (Unchecked Conversion) 3.8
H000007 Store and extract bit fields, defined by represeftation clauses. (1)

L000001 Simple "for" loop. 4.1
L000002 Simple "while" loop. 5.3
L000003 Simple "exit" loop. 5. 1
L000004 Loop of 5 iterations with pragma OPTIMIZE (Time). 5.0
L000005 Loop of 5 iterations with pragma OPTIMIZE (Space). 5.0

P000001 Procedure call and return (inlineable), no parameters. 0.2
P000002 Procedure call and return (not inlineable), no parameters. 6.7
P000003 Procedure call and return (compiled separately). 6.3
P000004 Procedure call and return (Pragma INLINE used). 0.0

-55.1-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for MVME 133A (Continued). Clock: 20MHz, M68020, 1 Megabyte on
board DRAM: 32 bit address and data access; 1 wait state. Checks ON, Optimizations ON,
Timer configured to 1024 Hz TICK. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

P000005 Procedure call and return one parameter, in INTEGER). 7.2
P000006 Procedure call and return one parameter, out INTEGER). 8.6
P000007 Procedure call and return one parameter, in out INTEGER). 9.0
P000010 Procedure call and return ten parameters, in INTEGER). 19.6
P000011 Procedure call and return twenty parameters, in INTEGER). 34.4
P000012 Procedure call and return ten parameters, in record type). 20.9
P000013 Procedure call and return twenty parameters, in recrdtype). 35.9

TOOOO01 Minimum rendezvous, entry call and return. 163.8
T000002 Task entry call and return (one task, one entry). 169.0
T000003 Task entry call and return (two tasks, one entry each). 228.3
T000004 Task entry call and return (one task, two entries). 327.9
T000005 Active entry and return (ten tasks, one entry each). 213.8
T000006 Task entry call and return (one task, ten entries). 711.6
T000007 Minimum rendezvous, entry call and return. 103.6
T000008 Passing an integer from producer to consumer 616.6

* WHETSTONE: units are in KWIPS not in microseconds.
(1) Uses bit level record representation clauses. Bit level representation clauses are not
supported in version 3.5, but will be implemented for version 4.1 of the compiler (October
1988).

-55.2-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for MVME 133A. Clock: 20MHz, M68020, 1 Megabyte on board
DRAM: 32 bit address and data access; 1 wait state. Stack overflow checking only enabled.
Timer configured to 1024 Hz TICK. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

A000091 Dhrystone 280
A000092 Whetstone benchmarks, using manufacturer's math routines 542"
A000093 Whetstone benchmarks, using standard math routines 296*

C000001 Task creation/terminate, task type declared in package. 1377.1
C000002 Task creation/terminate, task type declared in procedure. 1463.5
C000003 Task creation/terminate, task type declared in block. 1454.3

D000001 Dynamic array, use and deallocation. 11.6
D000002 Dynamic array elaboration and initialization. 2432.8
D000003 Dynamic record allocation and deallocation. 37.8
D000004 Dynamic record elaboration and initialization. 2449.7

E000001 Raise and handle an exception locally. 1038.3
E000002 Raise and handle an exception in a package. 3201.6
E000003 Raise and handle an exception nested 3 deep in procedures. 5545.3
E000004 Raise and handle an exception nested 4 deep in procedures. 6219.3
E000005 Raise and handle an exception in a rendezvous. 10095.8

F000001 Set a BOOLEAN flag using a logical equation. 0.0
F000002 Set a BOOLEAN flag using an "if' test. 0.0

G000005 TEXT IO.Get an INTEGER from a local string. 305.5
G000006 TEX'FIO.Get a FLOAT from a local string. 1704.3

H000001 BOOLEAN operations on entire PACKed array. 44.0 (1)
H000002 BOOLEAN operations on entire array (not packed). 44.0
H000003 BOOLEAN operations on components of a PACKed array. 104.8 (1)
H000004 BOOLEAN operations on components of an array (not packed). 104.8
H000005 Move INTEGER to INTEGER (Unchecked Conversion). 0.0
H000006 Move ai -ay of 10 Floats to record (Uncheckid Conversion) 0.0
H000007 Store and extract bit fields, defined by represeitation clauses. (2)

LOOOO01 Simple "for" loop. 2.3
L000002 Simple "while" loop. 3.2
L000003 Simple "exit" loop. 3.4
L000004 Loop of 5 iterations with pragma OPTIMIZE (Time). 2.9
L000005 Loop of 5 iterations with pragma OPTIMIZE (Space). 2.9

P000001 Procedure call and return (inlineable), no parameters. 0.0
P000002 Procedure call and return (not inlineable), no parameters. 6.6
P000003 Procedure call and return (compiled separately). 9.0
P000004 Procedure call and return (Pragma INLINE used). 2.9

-55.3-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for MVME 133A (Continued). Clock: 20MHz, M68020, 1 Megabyte on
board DRAM: 32 bit address and data access; 1 wait state. Stack overflow checking only
enabled. Timer configured to 1024 Hz TICK. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

P000005 Procedure call and return one parameter, in INTEGER). 10.0
P000006 Procedure call and return one parameter, out INTEGER). 11.6
P000007 Procedure call and return one parameter, in out INTEGER). 13.0
P000010 Procedure call and return ten parameters, in INTEGER). 18.4
P000011 Procedure call and return twenty parameters, in INTEGER). 38.1
P000012 Procedure call and return ten parameters, in recordtype). 19.6
P000013 Procedure call and return twenty parameters, in recordtype). 40.9

T000001 Minimum rendezvous, entr call and return. 162.6
T000002 Task entry call and return (one task, one entry). 169.0
T000003 Task entry call and return (two tasks, one entry each). 227.9
T000004 , Task entry call and return (one task, two entries). 330.3
T000005 Active entry and return (ten tasks, one entry each). 213.4
T000006 Task entry call and return (one task, ten entries). 720.8
T000007 Minimum rendezvous, entry call and return. 102.8
T000008 Passing an integer from producer to consumer 622.9

* WHETSTONE: units are in KWIPS not in microseconds.
(1) Tests the effects of boolean operations on packed arrays. This feature is not
implemented in version 3.5, but will be implemented for version 4.1 (October 1988).
(2) Uses bit level record representation clauses. Bit level representation clauses are not
supported in version 3.5, but will be implemented for version 4.1 of the compiler (October
1988).

-55.4-

Guidelines to Select, Configure and Use an Ada Runtime Environment

RUNTIME STORAGE REQUIREMENTS

It depends on which executive is used (VRTX, VRTX32, or ARTK), but in general,
these approximations apply:

Max Sequential, approximately 25 K Bytes
Max Tasking, approximately 35 K Bytes
Max I/O, +20 KBytes.

-56-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Qi: What is the resolution of the clock used for delay statements?
Al: Determined by user.

Q2: How long, and for what reasons are interrupts disabled?
A2: Max approximately 20-30 microseconds for critical code.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the callin task?
A3: Based upon past implementations using Habermann-Nassi and Order of Arrival
schemes for rendezvous execution, Alsys has abandoned these "optimizations" because they
incur too much bookkeeping overhead. Accept bodies with empty statement lists are
optimized to avoid context switching.

Q4: What are the restrictions for representation clauses?
A4: All representation clauses are currently supported to the byte level, except:

- bit level representation clauses (V4.1)
- pragma PACK
- change of representation for derived record types
- T'SIZE for types declared in a generic unit
- T'SMALL for fixed point types must be a power of 2, and the absolute value of the
exponent must be less than 31
- enumeration clauses are not allowed if there is a range constraint on the parent
subtype
- address representation clauses for program units
- address clauses for interrupt entries are only supported when there are no
parameters for the task entry. An alternative mechanism is supplied for entries with a
single parameter.

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
A5: Preemptive, round-robin with time slicing option.

Q6: What are the restrictions on pragma INLINE?
A6: Routines must be non-recursive.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: No.

-57-

Guidelines to Select, Configure and Use an Ada Runtime Environment

09: What object types are supported by pragma SHARED?
A9: Scalars.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

- Max. No. of Tasks
- Task Time Slice Default
- Timer Resolution
- Exception Trace
- Default Stack Sizes
- Terminal I/O
- Optional Numeric Co-processor

Also see Technical Summary preceding this section.

-58-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

CAP Industry, Ltd. MicroVAX II 80286, Intel iAPX 80286
Compiler version 2.1 (under MicroVMS 4.6) protected mode

(bare machine)

DEGREE OF CONFIGURABILITY

I. Linker Capability:

- Any part of a library unit being required loads the entire unit. (Unoptimized)

Individual subprograms and/or data objects may be extracted from packages only.
(Optimized)

II. Customization of the Runtime:

- By pragmas
- By compiler switches
- By linker switches
- By Modifying-Replacing the source to selective runtime routines provided with the
purchase of the compiler (i.e. Device Drivers).

III. Documentation provided to help user configure runtime:

- CAPTACS - E286 Users Guide (Contains chapters such as "Programming Guide",
"Configurability", and "Nonstandard Programming Interfaces").

IV. Services to customize the runtime:

- CAP Industry Ltd. does not provide services to customize the runtime for a
particular application.

V. Cost of runtime source code:

- $60,000

VI. Source of Information: Vendor Input

-59-

Guidelines to Select, Configure and Use an Ada Runtime Environent

CAP Industry Limited~
Hosts MicroVAX (VMS 4.6)

Target: InteliiAPX 80286 (protected mode) C
Version, 2.2 C

U,

3050J
30000

28000

26000

24000

22000 CD

20000

Lq 19000 I Q

0) 0S16000C C

14000 ... V/

12000 kA 0

100100 to) Q u u
CD' 0 0

L L Z
8000 : _ _

C c

6000 L0 in "0In W.. W, O

4000 3

C aCD C
2000 CD-

+; ~A

+; +; +; +; C C ; n 0)
0) 0) 0) 0) 0) 0 41 4.) 0 LI Q. L

L 4- (1 zP E 0 0 0Y CIi
L 0 CL 3 U L N r w1

0 kA :3 41i- 0 (Ui - A~
E W) L a. >
40 wi L CD N -Y . L

2: U Ci U QO kA .XU I alo +P x "a 0 0)
U L. C Li C L;.

Sum of ALL comiponenrts = 143,000 bytes

* Component wa~s supplied by vendor.

am Plus Driver (approximately 2,000 bytes)

-60-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

QI: What is the resolution of the clock used for delay statements?
Al: 976.6 microseconds, configurable

Q2: How long, and for what reasons are interrupts disabled?
A2: Interrupts are disabled in order to protect the scheduler and memory manager while
they are updating data structures.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: Synchronization rendezvous: If the accepting task has a null accept and equal or lower
priority, the calling task will not stop, but the accepting task will become active.

Interrupts can be handled in the environment of the interrupted task if no interactions with
other tasks occur during the rendezvous.

Q4: What are the restrictions for representation clauses?
A4: (1) Rtepresentation clauses are not supported for derived types.

2) Enumeration representation clauses are not supported for CHARACTER and
BOOLEAN types.
(3) Record representation clauses are supported with the following constraints

a. word alignment is mod 16
b. the ordering of bits within a byte is right to left.

(4) Length clause is supported:
a. for the attribute 'storage-size for task types.
b. for the attribute 'size. The value specified is checked to be sufficient but
otherwise ignored.
c. for the attribute 'small.

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
A: Round-robin algorithm for tasks with the same priority.

Q6: What are the restrictions on pragma INLINE?
A6: None.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: No.

Q9: What object types are supported by pragma SHARED?
A9: The restrictions on shared variables are only those specified in the LRM.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

-61-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Maximum number of tasks (Heap space/Table space)
- Timer Resolution
- Default stack sizes
- Default task priority
- Optional numeric co-processor
- Fast interrupt entry
.Terminal I[O

Additional items:

- Device drivers
- Startup, normal and exception termination
- Number and type of interrupt devices
- Task lockup handling

-62-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the Intel 80286

package SYSTEM is

type SEGOFFSET is new INTEGER;
type SEG COLLECTOR is new INTEGER;
type ADDRESS is private;
type SUBPROGRAM VALUE is private;
type NAME is (CAPTACS E286);
type SYSTEMNAME : constant NAME := CAPTACSE286;
STORAGE UNIT : constant := 8;
MEMORYSIZE : constant := 2**24;

-- System-dependent declarations:

MININT : constant := -(2**31);
MAXINT : constant := (2**31) - 1;
MAXDIGITS : constant := 15;
MAXMANTISSA : constant := 31;
FINEDELTA : constant := 1.0/(2**(MAXMANTISSA - 1));
TICK : constant := 1.0/(2**10);

-- Othier system-dependent declarations:

subtype PRIORITY is INTEGR range 0 .. 15;

private

-- Types ADDRESS and SUBPROGRAMVALUE are private

end SYSTEM;

-63-

Guidelinis to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the Intel 80286

Package STANDARD is not specified in Ada by CAPTACS. They provided

information that indicates the following numeric types are supported.

longinteger is a predefined 32 bit integer type

float is a predefined 32 bit twos compliment floating point type,
with 24 bits in the mantissa and an exponent range of -125 to +128

longfloat is a predefined 64 bit twos compliment floating point type,
with 53 bits in the mantissa and an exponent range of -1021 to +1024

shortfixed is a predefined 16 bit twos compliment fixed type

fixed is a predefined 32 bit twos compliment fixed type

-64-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

DDC-I DEC MicroVAX II 8086, Intel iSBC 86/05A,
Compiler version 4.2 (under MicroVMS 4.4) 8086, Titan SECS 86/20,

80186, Intel iSBC 186/03A
80286, Titan SECS 286/20
80386, Intel iSBC 386/21,
(All bare machines)

Compiler version 4.2 DEC-VAX-11/7xx 8086, Intel iSBC 86/35
VAX-8xxx,VAX station, 80186, Intel iSBC 186/03A
& MicroVAX Series (under 80286, Intel iSBC 286/12
VAX/VMS 4.6 or 80286, Intel iSBC 286/12
MicroVAX/VMS 4.6) (protected mode)

80386, Intel iSBC 386/21
80386, Intel iSBC 386/21
(protected mode)
All bare machines)

All Derived

Compiler version 4.2 DEC MicroVAX II 80386, Force CPU-386
(under MicroVMS 4.4) VMEbus

(bare machine)

DEGREE OF CONFIGURABILITY

I. Linker Capability:

- Only data objects that are referenced are allocated memory.

II. Customization of the Runtime:

- By pragmas
- By compiler switches
- By Modifying-Replacing the source to selective runtime routines provided with
the purchase of the compiler (i.e. Device Drivers).
The runtime system is divided into two parts:

The permanent part that is independent of the execution environment.

The user configurable part which consists of user configurable code and data. The
user configurable code is typically a set of assembly language routines, called from the
permanent part of the runtime system and generated Ada code.

-65-

Guidelines to Select, Configure and Use an Ada Runtime Environment

In the permanent part of the runtime system, when a module is not needed, it is not
included during the linking process. In the user configurable code, it is up to the user
to eliminate code that is not used. Eliminating unneeded user configurable modules
can have a large effect in reducing the overal size of the RTS (it also reduces the
number of modules in the permanent part as well), since the user configurable code
makes calls to the permanent part.

There are two RTS versions supported: a tasking version and a non-tasking version.

Ada Linker Options:

- Maximum Number of Tasks
- Task Time Slice Default
- Timer Resolution
- Default Stack Sizes
- Default Task Priority
- Optional Numeric Co-processor

RTS Extension:

- Dynamic Task Priority
- Semaphore Operations
- Exception Trace
- Fast Interrupt Entry
- Terminal I/O
- ROMable Code
- RTS variant implements strict priority scheduling and priority inheritance.

Real-time Features Supported:

- Address Clauses
- Record Representation Clauses
- Length Clauses
- Enumeration Representation Clauses
- Interrupt Entries
- Machine Code Insertions
- Pragma Interface
- Pragma Inline
_ All Chapter 13 Features

Tools: (Allows Standard Intel Tool Usage)

- In-circuit emulation
- Performance Analyzer
- Assembler, Linker, Locator
- Debuggers
- Powerful Symbolic Debugger (Q4 1988)

Ill. Documentation provided to help user configure runtime:

- Run-Time System detailed design for DACS-80x86 - DDC-I 5801/RPT/70 issue 1

-66-

Guidelines to Select, Configure and Use an Ada Runtime Environment

IV. Services to customize the runtime:

- Provided by DDC-I via training classes and consulting services.
- Cost: Daily consulting rates and expenses.

V. Cost of runtime source code:

- $30,000 to $50,000

VI. Source of Information: Vendor Input, Compiler Manuals, User Input.

-67-

Guidelines to Select, Configure and Use an Ada Runtime Environment

DDC-I PIWG results for DACS 8086. Clock : 8MHz, 1 wait-state, real mode, (all tests
compiled with OPTIMIZE and NOCHECKS). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds

A000091 "Dhrystone" benchmark 1684.5
A000093 "Whetstone" benchmark 119*

C000001 Task creation/terminate, task type declared in package. 2328.0
C000002 Task creation/terminate, task type declared in procedure. 1816.0
C000003 Task creation/terminate, task type declared in block. 1812.7

D00000i Dynamic array, use and deallocation. - 40.0
D000002 Dynamic array elaboration and initialization. 32227.0
D000003 Dynamic record allocation and deallocation. 100.5
D000004 Dynamic record elaboration and initialization. 40830.0

E000001 Raise and handle an exception locally. 372.9
E000002 Raise and handle an exception in a package. 559.1
E000004 Raise and handle an exception nested 4 deep in procedures. 653.1

F000001 Set a BOOLEAN flag using a lolical equation. 9.9
F000002 Set a BOOLEAN flag using an "if' test. 11.1

L00001 Simple "for" loop. es 10.9
L000002 Simple "while" loop. 10.4
LM00003 Simple "exit" loop. 10.4

P000001 Procedure call and return (inlineable), no parameters. 22.4
P000002 Procedure call and return (not inlineable), no parameters. 22.4
P000003 Procedure call and return (compiled separately). 19.9
P000004 Procedure call and return (Pragma INLINE used). 17.6
P000005 Procedure call and return (one parameter, in INTEGER). 24.9
P000006 Procedure call and return (one parameter, out INTEGER). 24.7
P000007 Procedure call and returr tone parameter, in out INTEGER). 29.6
P000010 Procedure call and return (ten parameters, in INTEGER). 60.3
P000011 Procedure call and return (twenty parameters, in INTEGER). 99.3
P000012 Procedure call and return (ten parameters, in record-type). 120.2
P000013 Procedure call and return (twenty parameters, in record-type). 239.0

T000001 Minimum rendezvous, entry call and return. 430.3
T000002 Task entry call and return (one task, one entry). 426.6
T000003 Task entry call and return (two tasks, one entry each). 444.9
T000004 Task entry call and return (one task, two entries). 712.9
T000005 Active entry and return (ten tasks, one entry each). 416.3
T000006 Task entry call and return (one task, ten entries). 1102.5
T000007 Minimum rendezvous, entry call and return. 285.3

* A000093 : units are in KWIPS not in microseconds.

-68-

Guidelines to Select, Configure and Use an Ada Runtime Environment

DDC-I PIWG results for DACS 80186. Clock : 8MHz, zero wait-states, real mode, (all tests
compiled with OPTIMIZE and NOCHECKS). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds

A000091 "Dhrystone" benchmark. 974.3
A000093 "Whetstone" benchmark. 145*

C000001 Task creation/terminate, task type declared in package. 1434.3
C000002 Task creation/terminate, task type declared in procedure. 1054.7
C000003 Task creation/terminate, task type declared in block. 1054.7

D000001 Dynamic array, use and deallocation. 24.9
D000002 Dynamic array elaboration and initialization. 21992.2
D000003 Dynamic record allocation and deallocation. 62.6
D000004 Dynamic record elaboration and initialization. 24101.6

E00O001 Raise and handle an exception locally. 245.1
E000002 Raise and handle an exception in a package. 373.8
E000004 Raise and handle an exception nested 4 deep in procedures. 432.7

F000001 Set a BOOLEAN flag using a logical equation. 7.2
F000002 Set a BOOLEAN flag using an "if' test. 7.8

LOOOO01 Simple "for" loop. 6.9
L000002 Simple "while" loop. 6.2
L000003 Simple "exit" loop. 6.6

P000001 Procedure call and return (inlineable), no parameters. 13.0
P000 Procedure call and return (not inlineable), no parameters. 13.0
P000003 Procedure call and return compiled separately). 10.6
P000004 Procedure call and return Pragma INLINE used). 8.3
P000005 Procedure call and return one parameter, in INTEGER). 13.5
P000006 Procedure call and return one parameter, out INTEGER). 15.6
P000007 Procedure call and return one parameter, in out INTEGER). 17.4
P000010 Procedure call and return ten parameters, in INTEGER). 34.3
P000011 Procedure call and return twenty parameters, in INTEGER). 58.4
P000012 Procedure call and return ten parameters, in recordctype). 80.3
P000013 Procedure call and return twenty parameters, in recordLtype). 159.3

T000001 Minimum rendezvous, entr call and return. 255.9
T000002 Task entry call and return (one task, one entry). 253.4
T000003 Task entry call and return (two tasks, one entry each). 264.3
T000004 Task entry call and return (one task, two entries). 414.1
T000005 Active entry and return (ten tasks, one entry each). 247.3
T000006 Task entry call and return (one task, ten entries). 617.2
T000007 Minimum rendezvous, entry call and return. 168.0

*A000093 : units are in KWIPS not in microseconds.

-69-

Guidelines to Select, Configure and Use an Ada Runtime Environment

DDC-I PIWG results for DACS 80286. Clock: 8MHz, zero wait-states, real mode, (all tests
compiled with OPTIMIZE and NOCHECKS). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds

A000091 "Dhrystone" benchmark. 483.9
A000093 "Whetstone" benchmark. 172*

CO000O1 Task creation/terminate, task type declared in package. 731.2
C000002 Task creation/terminate, task type declared in procedure. 557.3
C000003 Task creation/terminate, task type declared in block. 555.4

D000001 Dynamic array, use and deallocation. 10.6
D000002 Dynamic array elaboration and initialization. 10839.8
D000003 Dynamic record allocation and deallocation. 28.5
D000004 Dynamic record elaboration and initialization. 11445.3

E000001 -Raise and handle an exception locally. 144.2
E000002 Raise and handle an exception in a package. 214.2
E000004 Raise and handle an exception nested 4 deep in procedures. 219.6

F000001 Set a BOOLEAN flag using a logical equation. 3.2
F000002 Set a BOOLEAN flag using an "if' test; 3.5

L000001 Simple "for" loop. 3.8
L000002 Simple "while" loop. 3.3
L000003 Simple "exit" loop. 3.8

P000001 Procedure call and return inlineable), no parameters. 6.7
P000002 Procedure call and return not inlineable), no parameters. 6.7
P000003 Procedure call and return compiled separately). 6.4
P000004 Procedure call and return Pragma INLINE used). 0.0
P000005 Procedure call and return one parameter, in INTEGER. 7.4
P000006 Procedure call and return one parameter, out INTEGER). 8.9
P000007 Procedure call and return one parameter, in out INTEGER). 9.3
P000010 Procedure call and return ten parameters, in INTEGER). 17.0
P000011 Procedure call and return twenty parameters, in INTEGER). 28.0
P000012 Procedure call and return ten parameters, in record-type). 31.5
P000013 Procedure call and return twenty parameters, in recordtype). 58.5

TOOOO01 Minimum rendezvous, ent call and return. 136.6
T000002 Task entry call and return one task, one entry). 134.6
T000003 Task entry call and return two tasks, one entry each). 141.6
T000004 Task entry call and return one task, two entries). 227.8
T000005 Active entry and return (ten tasks, one entry each). 132.2
T000006 Task entry call and return (one task, ten entries). 350.6
T000007 Minimum rendezvous, entry call and return. 93.9

°A000093 : units are in KWIPS not in microseconds.

-70-

Guidelr.,s to Select, Configure and Use an Ada Runtime Environment

DDC-I PIWG results for DACS 80386. Clock : 16MHz, zero wait-states, real- mode, (all
tests compiled with OPTIMIZE and NOCHECKS). PIWG test suite 1988.

PIWG Test Description Micro -

Name seconds

A000091 "Dhrystone" benchmark. 240.6
A000093 "Whetstone" benchmark. 776*

C000001 Task creation/terminate, task type declared in package. 343.6
C000002 Task creation/terminate, task type declared in procedure. 265.2
C000003 Task creation/terminate, task type declared in block. 264.1

D000001 Dynamic array, use and deallocation. 5.1
D000002 Dynamic array elaboration and initialization. 5605.5
D000003 Dynamic record allocation and deallocation. 15.5
D000004 Dynamic record elaboration and initialization. 6303.7

E000001 Raise and handle an exception locally. 64.4
E000002 Raise and handle an exception in a package. 97.2
E000004 Raise and handle an exception nested 4 deep in procedures. 104.9

F000001 Set a BOOLEAN flag using a logical equation. 1.5
F000002 Set a BOOLEAN flag using an "if' test. 1.4

L000001 Simple "for" loop. 1.7
L000002 Simple "while" loop. 1.6
L000003 Simple "exit" loop. 1.7

P000001 Procedure call and return inlineable), no parameters. 4.3
P000002 Procedure call and return not inlineable), no parameters. 4.3
P000003 Procedure call and return compiled separately). 4.0
P000004 Procedure call and return Pragrna INLINE used). 0.0
P000005 Procedure call and return one parameter, in INTEGER). 4.5
P000006 Procedure call and return one parameter, out INTEGER). 5.0
P000007 Procedure call and return one parameter, in out INTEGER). 5.3
P000010 Procedure call and return ten parameters, in INTEGER). 9.4
P000011 Procedure call and return twenty parameters, in INTEGER). 14.1
P000012 Procedure call and return ten parameters, in record-type). 17.6
P000013 Procedure call and return twenty parameters, in recordtype). 33.2

TOOOO01 Minimum rendezvous, entr call and return. 67.8
T000002 Task entry call and return (one task, one entry). 67.7
T000003 Task entry call and return (two tasks, one entry each). 70.6
T000004 Task entry call and return (one task, two entries). 110.0
T000005 Active entry and return (ten tasks, one entry each). 66.2
T000006 Task entry call and return (one task, ten entries). 164.6
T000007 Minimum rendezvous, entry call and return. 45.7

*A000093 : units are in KWIPS not in microseconds.

-71-

Guidelines to Select, Configure and Use an Ada Runtime Environment

PLO-I) Inc,
Host: VAX / VMS

Target, Intet 8086, 80186, 80286, 80386
Version: 4.2

7000

6500

6000 LA

U
C 05500 ~a

in ... to
5000 *'0

C C C4500 . .0 i 0
0 0) 0, 01

w 00 . 0) 0) 0) . .

C, C C Z

~3500 x x
U. . L L.~3000 a: 0 0

in LA in
-t n LA 0n

2500 w Ci 0250E U U U
C 0 0 0

2000 C). CDo

1500_ 4 ..

1000 . -o

500 m C C

c + C 4;
0) C0) 0) 0) 0) D) + 0) U 0

C. 0. C 0 3 U C3 w.

E in L. >
wi to L 01 N 0

x U O U 01 (A _x

U L. wCL C adL
1 0- 01

-Sum Of~ AUl Components =700 -20200 bytes

-72-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Appendix F Notes

The following excerpts are taken from the DDC-I Ada Compiler System User's Guide. [101

Representation Clause Restrictions

The DACS-80x86 fully supports the 'SIZE representation for derived types.

Length Clause

When using the SIZE attribute for discrete types, the maximum value that can be
specified is 16 bits.

SIZE is only obeyed for discrete types when the type is a part of a composite object,
e.g. arrays or records, for example:

type byte is range 0..255;

for bte'size use 8;

sixteen.bits.allocated : byte; -- one word allocated

eight-bit-per.element : array (0..7) of byte; -- four words allocated

type rec is
record
cl, c2 : byte; - eight bits per component

end record;

Using the STORAGE.SIZE attribute for a collection will set an upper limit on the
total size of objects allocated in this collection. If further allocation is attempted, the
exception STORAGE-ERROR is raised.

When STORAGE-SIZE is specific in a length clause for a task, the process stack
area will be of the specified size. The process stack area will be allocated inside the
"standard" stack segment.

Enumeration Representation Clause

Enumer.tion representation clauses may specify representations in the range of
INTEGER'FIRST + 1..INTEGER'LAST- 1.

Record Representation Clauses

When representation clauses are applied to records the following restrictions are
impose,'.

- the component type is a discrete type different from LONGIN'TEGER
- the component type is an array with a discrete elemeat type different from
LONG-INTEGER

-73-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- the storage unit is 16 bits
- a record occupies an integral number of storage units
- a record may take up a maximum of 32K storage units
- a component must be specified with its proper size (in bits), regardless of
whether the component is an array or not
- if a non-array component has a size which equals or exceeds one storage unit
(16 bits) the component must start on a storage unit boundary, i.e. the
component must be specified as:

component at N range 0..16 * M - 1;

where N specifies the relative storage unit number (0,1,...) from the beginning
of the record, and M the require number of storage units (1, 2, ...)
- the elements in an array component should always be wholly contained in one
storage unit
- if a component has a size which is less than one storage unit, it must be wholly
contained within a single storage unit:

I component at N range X..Y;

where N is a s in previous paragraph, and 0 < = X < = Y < = 15.

When dealing with PACKED ARRAY the following should be noted:

- the elements of the array are packed into 1, 2, 4 or 8 bits

If the record type contains components which are not covered by a component clause,
they are allocated consecutively after the component with the value. Allocation of a
record component without a component clause is always aligned on a storage unit
boundary. Holes created because of component clauses are not otherwise utilized by
the compiler.

Alignment Clauses

Alignment clauses for records are implemented with the following
characteristics:

- If the declaration of the record type is done at the outermost level in a
library package, any alignment is accepted.
- If the record declaration is done at a given static level (higher than the
outermost library level, i.e., the permanent area), only word alignments
are accepted.
- Any record object declared at the outermost level in a librarypackage
will be aligned according to the alignment clause specified for the type.
Record objects declared elsewhere can only be aligned on a word
boundary. If the record type has been associated a different alignment,
an error message will be issued.
- If a record type with an associated alignment clause is used in a
composite type, the alignment is required to be one word; an error
message is issued if this is not the case.

-74-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Implementation-Dependent Names for Implementation-Dependent Components

None defined by the compiler.

Address Clauses

This section describes the implementation of address clauses and what types of entities may
have their address specified by the user.

Objects

Address clauses are supported for scalar and composite objects whose size can be
determined at compile time.

Task Entries

The implementation supports two methods to equate a task entry to a hardware
interrupt through an address clause:

1.) Direct transfer of control to a task accept statement when an interrupt
occurs (requires use of the pragma INTERRUPT.HANDLER).

2.) Mapping of an interrupt onto a normal conditional entry call, i.e., the
entry can be called from other tasks without special actions, as well as
being called when an interrupt occurs.

Fast Interrupt Entry

Directly transferring control to an accept statement when an
interrupt occurs requires the implementation dependent pragma
INTERRUPT.ADLER to tell the compiler that the task is an
interrupt handler. By using this pragma, the user is agreeing to
place certain restrictions on the task in order to speed up the
software response to the hardware interrupt. Consequently, use of
this method to capture interrupts is much more efficient than the
general method.

The following constraints are placed on the task:

1.) It must be a task object, i.e., not a task type.

2.) The pragma must appear first in the specification of the
task object.

3.) All entries of the task object must be single entries with
no parameters.

4.) The entries must not be called form any task.

5.) The body of the task object must not contain anything
other than simple accept statements (potentially enclosed in

-75-

Guidelines to Select, Configure and Use an Ada Runtime Environment

a loop) referencing only #lobal variables, i.e., no local
variables. In the statement list of a simple accept statement,
it is allowed to call normal single and parameterless, entries
of other tasks, but no other tasking constructs are allowed.
The call to another task entry, in this case, will not lead to an
immediate task context switch, but will return to the caller
when complete. Once the accept is completed, the task
priority rules will be obeyed, and a context switch may occur.

Normal Interrupt Entry

Mapping of an interrupt onto a normal conditional entry call puts
the following constraints on the involved entries and tasks:

1.) The affected entries must be defined in a task object only
(not a task type).
2.) The entries must be single and parameterless.

Any interrupt entry, which is not found in an interrupt handler (first
method), will leadto an update of the interrupt vector segment at
link time. The interrupt vector segment will be updated to point to
the interrupt routine generated by the compiler to make the task
entry call. The interrupt vector segment is part of the user
configurable data and consists of a segment, preset to the
"standard" interrupt routines (e.g., constraint-error).

Unchecked Conversions

Unchecked conversion is only allowed between objects of the same "size".

-76-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the DACS-80X86

package SYSTEM is

type Word is new Integer;
type LongWord is new LongInteger;
type UnsignedWord is range 0..65535;
for UnsignedWord'SIZE use 16;

subtype SegmentId is UnsignedWord;

type Address is record
offset : UnsignedWord;
segment : SegmentId;

end record;

subtype Priority is Word range 0..31;

type Name is (iAPX86, iAPX186, iAPX286, iAPX386);

System Name : constant Name := iAPX186;
StorageUnit : constant := 16;
MemorySize : constant : 1_048_576;
Min Int : constant := -2 147_483 647 - 1;
Max Int : constant := 2_147_483_647;
MaxDigits : constant := 15;
Max Mantissa : constant := 31;
Fine Delta : constant := 2.0 / MAX INT;
Tick : constant := 0.000_000_125;

type InterfaceLanguage is (PLM86, ASM86);

type ExceptionId is record
unitnumber : UnsignedWord;
unique-number : UnsignedWord;

end record;

type TaskValue is new Integer;
type AccTaskValue is access TaskValue;

type Semaphore is
record
counter : UnsignedWord;
first : TaskValue;
last : TaskValue;

end record;

InitSemaphore : constant Semaphore'(1, 0, 0)!

end SYS.'EM;

-77-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Description of Package STANDARD for DACS 80X86 Bare Machine Target

Integer Types

Three predefined integer types are implemented, SHORTINTEGER, INTEGER, and
LONGINTEGER.

They have the following attributes:

Real Address Mode and 286 Protected Mode:

SHORTINTEGER'FIRST =-128

SHORTINTEGER'LAST =127

SHORTINTEGER'SIZE =16

INTEGER'FIRST =-32_768

INTEGER'LAST -=32_767

INTEGER'SIZE =16

LONG_-INTEGER'FIRST =-2_147_483_648

LONGINTEGER'LAST 2 2147_483_647
LONGINTEGER' SIZE =32

386 Protected Mode:

SHORTINTEGER'FIRST =-32_768

SHORTINTEGER'LAST =32_767

SHORTINTEGER'SIZE =16

INTEGER'FIRST =-2**31

INTEGER'LAST -2**31-1

INTEGER'SIZE - 32

LO0NGINTEGER'FIRST =-2**63

LONG IINTZGER'LAST =2**63-1

LONGINTEGER'SIZE = 64

Floating Point Types

Two predefined floating point types are implemented, FLOAT and LONGFLOAT.

They have the following attributes:

FLOAT'DIGITS = 6
FLOAT'EPSILON = 9.53674316406250E-07
FLOAT'FIRST = -3.40282366920938E+38
FLOAT'LARGE = 1.93428038904620E+25
FLOAT'LAST = 3.40282366920938E+38
FLOAT'MACHINEEMAX = 126
FLOAT'MACHINEEMIN = -127

-78-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Package STANDARD for DACS 80X86 Bare Machine Target (Continued)

FLOAT'MACHINE MANTISSA = 24
FLOAT'MACHINEOVERFLOWS = TRUE
FLOAT'MACHINERADIX = 2
FLOAT'MACHINE ROUNDS = TRUE
FLOAT'MANTISSA = 21
FLOAT'SAFE EMAX = 126
FLOAT'SAFELARGE = 8.50705917302346E+37
FLOAT'SAFESMALL = 5.87747175411144E-39
FLOAT'SIZE = 32

LONGFLOAT'DIGITS = 15
LONGFLOAT'EPSILON = 8.88178419700125E-16
LONGFLOAT'FIRST = -1.7976931348623157E+308
LONGFLOAT'LARGE = 2.57110087081438E+61
LONG FLOAT'LAST = 1.7976931348623157E+308
LONG-FLOAT'MACHINE EMAX = 1023
LONGFL(AT'MACHINEEMIN = -1023
LONGFLOAT'MACHINEMANTISSA - 53
LONGFLOAT'MACHINEOVERFLOWS = TRUE
LONGFLOAT'MACHINERADIX = 2
LONGFLOAT'MACHINEROUNDS = TRUE
LONG-FLOAT'MANTISSA = 51
LONGFLOAT'SAFE EMAX = 1023
LONGFLOAT'SAFELARGE = 4.49423283715579E+307
LONGFLOAT'SAFESMALL = 2.22507385850720E-308
LONG_FLOAT'SIZE = 64

Fixed Point Types

Two kinds of anonymous predefined fixed point types are implemented, named
FIXED and LONG FIXED. Note that these names are not defined in package
STANDARD, but only used here for reference.

16 bits are used for the representation of FIXED types, and 32 bits are
used for the representation of LONGFIXED types.

For each of FIXED and LONGFIXED there exists a virtual predefined type
for each possible value of SMALL. The posible values of SMALL are the
powers of two that are representable by a LONGFLOAT value.

The lower and upper bounds of these types are:

lower bound of FIXED types = -32_768 * SMALL
upper bound of FIXED types = 32_767 * SMALL
lower bound of LONGFIXED types = -2_147_483648 * SMALL
upper bound of LONG-FIXED types = 2_147_483_647 * SMALL

-79-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Package STANDARD for DACS 80X86 Bare Machine Target (Continued)

A user defined fixed point type is represented as that predefined FIXED
or LONG FIXED type which has the largest value of SMALL not greater than
the user-specified DELTA, and which has the smallest range that includes
the user-specified range.

Any fixed point typeT has the following attributes:

T'MACHINEOVERFLOWS = TRUE
T'MACHINEROUNDS = FALSE

The Type DURATION

The predefined fixed point type DURATION has the following attributes:

DURATION'AFT = 5
DURATION'DELTA = DUPATION'SMALL
DURATION'FIRST = -131_072.00000
DURATION'FORE = 7
DURATION'LARGE = 1.31071999938965E05
DURATION'LAST = 131 071.00000
DURATION'MANTISSA = 31
DURATION'SAFELARGE = 1.31071999938965E05
DURATION'SAFESMALL = DURATION'SMALL
DURATION'SIZE = 32
DURATION'SMALL = 6.10351562500000E-05 = 2**(-14)

-80-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Digital Equipment Corp. VAX 8800 MicroVAX II
Compiler version 1.5 (under VAX/VMS, (under VAXELN

Version 4.7) Toolkit, Version
3.0 in Combination
with VAXELN Ada,
Version 1.2)

Compiler version 1.5 All members of Any of the following
the VAX family: configurations:
MicroVAX I, VAXstation I, MicroVAX I & II;
MicroVAX II, VAXstation II, rtVAX 1000; KA620
VAXstation 2000 (under (rtVAX 1000
MicroVMS, version 4.7); processor board);
MicroVAX 3500 & MicroVAX 3500 & 3600;
3600; VAXserver 3500, VAX-11/730
3600, & 3602; and & 750; and VAX
VAXstation 3200, 8500, 8530, 8550,
3500 (under VAX/VMS 8700, & 8800
version 4.7A); VAX-11/730, (under VAXELN Toolkit,
750, 780, 782, 785, VAX version 3.0 in
8200, 8250, 8300, 8350, combination with
8530,8550, 8600, 8650, VAXELN Ada version 1.2)
8700, and 8800 (under *Derived*
VAX/VMS, version 4.7)

DEGREE OF CONFIGURABILITY

I. Linker Capability:

- Any part of a library unit being required loads the entire unit.

II. Customization of the Runtime:

- By pragmas
- By linker switches
- By modifying/replacing the source to selective runtime routines provided by the
compiler vendor with the purchase of the compiler(i.e device drivers, etc).

III. Documentation provided to help user configure runtime:

- The "VAXELN Ada User's Manual" and "VAX Ada Run-Time Reference Manual".

-81-

Guidelines to Select, Configure and Use an Ada Runtime Environment

IV. Services to customize the runtime:

- Services to customize the runtime are not available by DEC.

V. Cost of runtime source code:

- The runtime source code is not for sale.

VI. Source of Information: Vendor Input.

-81.1-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Pigitcd Equipment Corp.
Hcst: VAX /VMS

Targett Micro VAX (under VAXELN toolkit)

Ver-sion: 1.5

34200

6000

5500

4500 ::0

u4 0 0 0

3500
S3000 C

2500
0

2000
U-) -

1500 -

1000

500

4-' -P 4-' k- A -)--
E E 0 2 0) GC

a) 0) ~ -P- U a- 0

C.5 C Q) a-

L 0 : U L 0- 0) LA
0- 0 < . LA

0'N .Y 0
u -Y U 0)
X inL

C

-Su~.m Of Al. Components = 63,200 bytes

-81.2-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

QI: What is the resolution of the clock used for delay statements?
Al: 10 milliseconds

Q2: How long, and for what reasons are interrupts disabled?
A2: VAXELN Ada runtime does not disable interrupts.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: The runtime uses inlined mutual exclusion operations to control access to resources
needed during rendezvous. It also performs deferred task switching. When an interrupt
arrives for a task that is the same priority as the active task, no switching occurs until the
current task becomes blocked.

Q4: What are the restrictions for representation clauses?
A4: Generally, VAXELN Ada supports all implementation-dependent facilities of chapter
13 that have useful and desirable interpretation in the VAXELN environment.

Pragma'PACK is supported. For a size specification for a discrete type, the given size must
not exceed 32 bits; the given size becomes the default allocation for all objects and
components of that type. For all other types, the given size must equal the size that would
apply in the absence of a size specification.

For a collection size specification, the given size becomes the initial and maximum size of
the collection. In the absence of a collection size specification, or for a size specification of
zero, no storage is initially allocated for a collection, and the collection is extended as
needed (until all virtual memory for the process is exhausted). If the value is less than zero,
CONSTRAINT-ERROR is raised.

For a task storage specification, the given size becomes the initial and maximum size for the
task activation (the task stack size). In the absence of a specification, or for a specification
of zero, a default size is used. In either case the task stack size is fixed at activation and is
not extendible. If the value is less than zero, CONSTRAINT-ERROR is raised.

For the specification of SMALL for a fixed point type, the given value must be a power of
2.0 (2.0**N, where -31 < = N < = 31) that is less than or equal to the delta of the type, and
that also satisfies the specified range of the type.

The implementation defined pragma TASK-STORAGE allows the specification of guard
pages for a task stack. (Guard pages form an area of memory which has no read or write
access and which thus helps in the detection of stack overflow (STORAGE-ERROR) when
non-Ada code is called from a task.

The implementation defined pragma MAIN-STORAGE allows the specification of a fixed
size stack and guard pages for the main program. In a VAXELN Ada program, the main
program stack is always fixed and is not extended as needed. Thus Pragma
MAIN-STORAGE is intended in particular to allow VAXELN Ada task stack sizes to be
adjusted and to allow the simulation of the VAXELN task stack implementation on a
VAX/VMS system.

-81.3-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Enumeration representation clauses are supported. Signed and unsigned representation in
the range MIN.INT.. MAXJNT are allowed.

Record representation clauses are supported. The value in an alignment clause must be a
power of 2 (2**N, where 0 < = N < = 0). For stack objects, the alignment must not exceed
4 (longword alignment). For statically and collection- allocated (heap-allocated) objects,
alignments up to 512 are supported.

VAXELN Ada distinguishes between types that are bit-alignable and those that are byte
alignable. Components of bit-alignable types can be allocated beginning at arbitrary bit
offsets in component clauses, while components of byte alignable types must be allocated at
byte (addressable storage) boundaries. Generally, discrete types, and record types whose
size is 32 bits or less are bit-alignable while other types are not.

VAXELN Ada supports address representation clauses for variables, but does not support
address representation clauses for constants, subprogram, package, or task units, or single
entries.

The representation attributes ADDRESS, SIZE, POSITION, FIRST.BIT, LAST-BIT, and
STORAGE-SIZE are supported. The implementation-defined attribute BIT yields the bit
offset within a storage unit of the first bit allocated to an object (a value from 0 to 7). The
implementation attribute MACHINE-SIZE yields the actual size that is allocated for a
variable of a type or subtype, taking into account the storage alignment and padding
conventions of the VAX Ada compiler.

The floating point representation attributes MACHINE-RADIX,
MACHINEMANTISSA, MACHINEEMAX, MACHINE__EMIN,
MACHINE-ROUNDS, and MACHINE-OVERFLOWS are also supported.

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
A5: The VAXELN Ada RTE supports a "run-until-blocked with higher priority
preemption" schedulin& algorithm. This algorithm lets a task run until it is either blocked or
a task of a higher priority becomes runable.

Q6: What are the restrictions on pragma INLINE?
A6: Pragma INLINE can be used to explicitly expand inline a subprogram declaration
body, or generic subprogram provided it meets the following conditions:

1. Neither its parameters or (in the case of functions) its result can be of type task
type or of a composite type that has components of a task type.
2. For functions, the function result, cannot be an unconstrained array type or an
unconstrained type with discriminants.

3. The body of the subprogram cannot contain any of the following:

1. A subprogram body, task or generic declaration or body stub.
2. A pacage body.
3. An exception declaration.
4. An access type declaration.

-81.4-

Guidelines to Select, Configure and Use an Ada Runtime Environment

5. An array or record type declaration.
6. Any dependent task.
7. Any subprogram call that denotes the given subprogram or any containing
subprogram, either directly or by means of renaming.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: Machine code inserts are not supported. However VAXELN Ada does provide
routines to read and write to processor and device registers. VAXELN Ada also provides
routines to access VAX interlocked machine instructions.

Q9: What object types are supported by pragma SHARED?
A9: VAXELN does not support pragma SHARED. It does support the implementation
defined pragma VOLATILE, which guarantees that a variable is allocated in main memory
from which the value is fetched and to which the value is updated on each use. Unlike
pragma SHARED, pragma VOLATILE does not force synchronization. Pragma
VOLATILE can be used with variables of any type, including composite variables.

I
Q10: What items are configurable for the runtime system?A10: The items below are configurable for the runtime system.

- Terminal I/O
- Task stack size
- Sharable or nonsharable runtime

-81.5-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for VAXELN Ada.

package SYSTEM is

type Name is (VAX-VMS, VAXELN);

System-Name : constant Name := VAXVMS
StorageUnit : constant 8;
MemorySize : constant (2**31) - 1;
MinInt : constant - (2**31);
MaxInt : constant := (2**31) - 1;
MaxDigits : constant := 33;
MaxMantissa : constant := 31;

Fine Delta : constant 2.0 ** (-31);

Tick : constant := 10.0 ** (-2);

subtype Priority is Integer range 0 .. 15;

-- Address type

type ADDRESS is private;

ADDRESSZERO : constant ADDRESS;

function "+" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;
function "+" (LEFT : INTEGER; RIGHT : ADDRESS) return ADDRESS;
function "-" (LEFT : ADDRESS; RIGHT : ADDRESS) return INTEGER;
function "-" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;

-- function "=" (LEFT,RIGHT : ADDRESS) return BOOLEAN;
-- function "/=" (LEFT,RIGHT : ADDRESS) return BOOLEAN;

function "<" (LEFTRIGHT : ADDRESS) return BOOLEAN;
function "<=" (LEFT,RIGHT : ADDRESS) return BOOLEAN;
function ">" (LEFT,RIGHT : ADDRESS) return BOOLEAN;
function ">=" (LEFT,RIGHT : ADDRESS) return BOOLEAN;

-- Note that because ADDRESS is a private type
-- the function "=" and "/=" are already available and
-- do not have to be explicitly defined.

generic
type TARGET is private;

function FETCHFROMADDRESS (A : ADDRESS) return TARGET;

generic
type TARGET is private;

function ASSIGNTOADDRESS (A : ADDRESS; T : TARGET);

-81.6-

GuiJ, anes to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for VAXELN Ada (Continued).

-- VAX Ada floating point type declaration for the VAX
-- hardware floating-point data types

type F FLOAT is (digits 6);
type DFLOAT is (digits 9);
type GFLOAT is (digits 15);
type HFLOAT is (digits 33);

type TYPECLASS is (TYPECLASSENUMERATION,
TYPECLASSINTEGER,
TYPECLASSFIXED POINT,
TYPECLASSFLOATINGPOINT,
TYPECLASSARRAY,
TYPECLASSRECORD,
TYPECLASS ACCESS,
TYPECLASSTASK,
TYPECLASSADDRESS);

-- AST handler type

type ASTHANDLER is limited private;

NOASTHANDLER : constant ASTHANDLER;

-- Non-Ada exception

NONADAERROR : exception;

-- VAX hardware-oriented types and functions

type BIT ARRAY is array (INTEGER range <>) of BOOLEAN;
pragma PACK(BITARRAY);

subtype BITARRAY_8 is BITARRAY (0..7);
subtype BITARRAY_16 is BIT ARRAY (0..15);
subtype BITARRAY_32 is BITARRAY (0..31);
subtype BITARRAY_64 is BITARRAY (0..63);

type UNSIGNEDBYTE is range 0..255;
for UNSIGNEDBYTE'SIZE use 8:

function "not" (LEFT :UNSIGNEDBYTE) return UNSIGNEDBYTE;
function "and" (LEFT, RIGHT :UNSIGNEDBYTE) return UNSIGNED-BYTE;
function "or" (LEFT, RIGHT :UNSIGNEDBYTE) return UNSIGNEDBYTE;
function "xor" (LEFT, RIGHT :UNSIGNEDBYTE) return UNSIGNEDBYTE;

-81.7-

Guidelines to Select, Configure and Use an Ada Ruhtime Environment

Package SYSTEM for VAXELN Ada (Continued).

function TOUNSIGNEDBYTE (X : BITARRAY_8) return UNSIGNEDBYTE;

function TOBITARRAY_8 (X : UNSIGNEDBYTE) return BITARRAY_8;

type UNSIGNEDBYTEARRAY is array(INTEGER range <>) of UNSIGNEDBYTE;

type UNSIGNED WORD is range 0 .. 65535;
for UNSIGNEDWORD'SIZE use 16;

function "not" (LEFT :UNSIGNEDWORD) return UNSIGNEDWORD;
function "and" (LEFT, RIGHT :UNSIGNEDWORD) return UNSIGNEDWORD;
function "or" (LEFT, RIGHT :UNSIGNEDWORD) return UNSIGNEDWORD;
function "xor" (LEFT, RIGHT :UNSIGNED_WORD) return UNSIGNEDWORD;

function TOUNSIGNEDWORD (X : BITARRAY_16) return UNSIGNEDWORD;
function TOBITARRAY_16 (X : UNSIGNEDWORD) return BITARRAY_16;

type UNSIGNEDWORDARRAY is array(INTEGER range <>) of UNSIGNED-WORD

type UNSIGNED LONG WORD is range MININT .. MAXINT;
for UNSIGNEDWORD'SIZE use 32;

function "not" (LEFT :UNSIGNEDLONGWORD) return UNSIGNEDLONGWORD
function "and" (LEFT, RIGHT:UNSIGNEDLONGWORD) return UNSIGNEDLONGWORD
function "or" (LEFT, RIGHT:UNSIGNEDLONGWORD) return UNSIGNEDLONGWORD
function "xor" (LEFT, RIGHT:UNSIGNEDLONGWORD) return UNSIGNEDLONGWORD

function TOUNSIGNEDLONGWORD(X :BIT ARRAY_32) return UNSIGNEDLONGWORD
function TOBITARRAY_32 (X :UNSIGNEDLONGWORD) return BITARRAY_32

type UNSIGNEDLONGWORDARRAY is
array (INTEGER range <>) of UNSIGNEDLONGWORD;

type UNSIGNED_QUADWORD is record
LO : UNSIGNEDLONGWORD;
L1 : UNSIGNEDLONGWORD;

end record;

-81.8-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for VAXELN Ada (Continued).

function "not" (LEFT :UNSIGNED_QUADWORD) return UNSIGNEDQUADWORD;
function "and" (LEFT, RIGHT:UNSIGNED_QUADWORD) return UNSIGNED_QUADWORD;
function "or" (LEFT, RIGHT:UNSIGNEDQUADWORD) return UNSIGNEDQUADWORD;
function "xor" (LEFT, RIGHT:UNSIGNEDQUADWORD) return UNSIGNEDQUADWORD;

function TOUNSIGNEDQUADWORD(X :BITARRAY_64) return UNSIGNEDQUADWORD;
function TOBITARRAY_64 (X :UNSIGNEDQUADWORD) return BITARRAY_64;

type UNSIGNED QUADWORDARRAY is
array (INTEGER range <>) of UNSIGNED_QUADWORD;

function TOADDRESS (X : INTEGER) return ADDRESS;
function TOADDRESS (X : UNSIGNEDLONGWORD) return ADDRESS;
function TOADDRESS (X : {universal integer)) return ADDRESS;

function TOINTEGER (X :ADDRESS) return INTEGER;
function TOUNSIGNEDLONGWORD (X :ADDRESS) return UNSIGNEDLONGWORD;

function TOUNSIGNEDLONGWORD (X :AST_HANDLER) return UNSIGNEDLONGWORD;

-- Conventional names for static subtypes of type UNSIGNEDLONGWORD

subtype UNSIGNED_1 is UNSIGNEDLONGWORD range 0 2** 1-1;
subtype UNSIGNED_2 is UNSIGNEDLONGWORD range 0 2** 2-1;
subtype UNSIGNED_3 is UNSIGNED_LONGWORD range 0 2** 3-1;
subtype UNSIGNED 4 is UNSIGNEDLONGWORD range 0 2** 4-1;
subtype UNSIGNED_5 is UNSIGNEDLONGWORD range 0 .2 ** 5-1;
subtype UNSIGNED_6 is UNSIGNED_LONGWORD range 0 .. 2** 6-1;
subtype UNSIGNED_7 is UNSIGNED_LONGWORD range 0 2** 7-1;
subtype UNSIGNED_8 is UNSIGNEDLONGWORD range 0 .. 2** 8-1;
subtype UNSIGNED_9 is UNSIGNEDLONGWORD range 0 .. 2** 9-1;
subtype UNSIGNED_10 is UNSIGNED LONGWORD range 0 2**10-1;
subtype UNSIGNED_11 is UNSIGNEDLONGWORD range 0 2**11-1;
subtype UNSIGNED_12 is UNSIGNEDLONGWORD range 0 .. 2**12-1;
subtype UNSIGNED_13 is UNSIGNEDLONGWORD range 0 .. 2**13-1;
subtype UNSIGNED_14 is UNSIGNEDLONGWORD range 0 .. 2**14-1;
subtype UNSIGNED_15 is UNSIGNEDLONGWORD range 0 .. 2**15-1;
subtype UNSIGNED_16 is UNSIGNEDLONGWORD range 0 .. 2**16-1;
subtype UNSIGNED_17 is UNSIGNEDLONGWORD range 0 2**17-1;
subtype UNSIGNED_18 is UNSIGNEDLONGWORD range 0 .. 2**18-1;
subtype UNSIGNED_19 is UNSIGNEDLONGWORD range 0 .. 2**19-1;
subtype UNSIGNED_20 is UNSIGNEDLONGWORD range 0 2**2-1;
subtype UNSIGNED_21 is UNSIGNEDLONGWORD range 0 .. 2**21-1;
subtype UNSIGNED_22 is UNSIGNEDLONGWORD range 0 .. 2**22-1;

-81.9-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for VAXELN Ada (Continued).

subtype UNSIGNED_23 is UNSIGNEDLONGWORD range 0 .. 2**23-1;
subtype UNSIGNED_24 is UNSIGNEDLONGWORD range 0 .. 2**24-1;
subtype UNSIGNED_25 is UNSIGNEDLONGWORD range 0 .. 2**25-1;
subtype UNSIGNED_26 is UNSIGNEDLONGWORD range 0 .. 2**26-1;
subtype UNSIGNED_27 is UNSIGNEDLONGWORD range 0 .. 2**27-1;
subtype UNSIGNED_28 is UNSIGNED_LONGWORD range 0 .. 2**28-1;
subtype UNSIGNED_29 is UNSIGNEDLONGWORD range 0 .. 2**29-1;
subtype UNSIGNED_30 is UNSIGNEDLONGWORD range 0 .. 2**30-1;
subtype UNSIGNED_31 is UNSIGNEDLONGWORD range 0 .. 2**31-1;

-- Function for obtaining global symbol values

function IMPORTVALUE (SYMBOL : STRING) return UNSIGNEDLONGWORD;

-- VAX device and process register operations

function READREGISTER (SOURCE : UNSIGNED BYTE) return UNSIGNEDBYTE;
function READ_REGISTER (SOURCE : UNSIGNED-WORD) return UNSIGNEDWORD;
function READREGISTER (SOURCE : UNSIGNEDLONGWORD)
return UNSIGNEDLONGWORD;

procedure WRITEREGISTER (SOURCE : UNSIGNEDBYTE;
TARGET : out UNSIGNED BYTE);

procedure WRITEREGISTER (SOURCE : UNSIGNED WORD;
TARGET : out UNSIGNED WORD);

procedure WRITEREGISTER (SOURCE : UNSIGNEDLONGWORD;
TARGET : out UNSIGNEDLONGWORD);

function MFPR (REGNUMBER : INTEGER) return UNSIGNEDLONGWORD;
Procedure MFPR (REG NUMBER : INTEGER;

SOURCE : UNSIGNEDLONGWORD);

-- VAX interlocked-instruction procedures

procedure CLEARINTERLOCKED (BIT : in out BOOLEAN;
OLD VALUE : out BOOLEAN);

procedure SETINTERLOCKED (BIT : in out BOOLEAN;
OLDVALUE : out BOOLEAN);

type ALIGNEDWORD is
record
VALUE : SHORTINTEGER 0;

end re(ojA;
for ALIGNEDWORD use
record

at mod 2;
end record;

-81.10

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for VAXELN Ada (Continued).

procedure ADDINTERLOCKED (ADDEND : in SHOTINTEGER;
AUGEND : in out ALIGNEDWORD;
SIGN : out INTEGER);

type INSQ_STATUS is (OKNOTFIRST, FAILNOLOCK, OKFIRST);
type REMQ_STATUS is (OKNOTEMPTY, FAILNOLOCK,

OKEMPTY, FAILWASEMPTY);

procedure INSQHI (ITEM : in ADDRESS;
HEADER : in ADDRESS;
STATUS : out INSQ_STATUS);

procedure REMQHI (ITEM : in ADDRESS;
HEADER : in ADDRESS;
STATUS : out REMQ_STATUS);

procedure INSQTI (ITEM : in ADDRESS;
HEADER : in ADDRESS;
STATUS : out INSQ_STATUS);

procedure REMQTI (ITEM : in ADDRESS;
HEADER : in ADDRESS;
STATUS : out REMQ_STATUS);

private

-- Not shown

end SYSTEM;

-81.11-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for VAXELN Ada

Package STANDARD is

type BOOLEAN is (FALSE, TRUE);

-- The predefined relational operators for this type are as follows:

-- function "=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "<" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function ">" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-- the predefined logical operators and the predefined logical negation
-- operator are as follows:
-- function "and" (LEFT, RIGHT : BOOLEAN) return BOOLEAn;
-- function "or" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "xor" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-- function "not" (RIGHT : BOOLEAN) return BOOLEAN;

type (universalinteger) is (range unbounded .. unbounded);

type INTEGER is (range -2147483_648 .. 2_147_483_647);

-- The predefined operators for this type are as follows

-- function "=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "<" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function ">" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "+" (RIGHT : INTEGER) return INTEGER;
-- function "-" (RIGHT : INTEGER) return INTEGER;
-- function "abs" (RIGHT : INTEGER) return INTEGER;

-- function "+" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "-" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "*" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "/" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "rem" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "mod" (LEFT, RIGHT : INTEGER) return INTEGER;

-81.12-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for VAXELN Ada (Continued).

-- function "**" (LEFT : INTEGER;
-- RIGHT : INTEGER) return INTEGER;

-- An implementation may provide additional predefined integer types.
-- It is recommended that the names of such additional types end
-- with INTEGER as in SHORTINTEGER or LONGINTEGER. The specification
-- of each operator for the type universal integer, or for any
-- additional predefined integer type is obtained by replacing
-- INTEGER by the name of the type in the specification of the
-- corresponding operator of the type INTEGER, except for thp right
-- operand of the exponentiating operator.

type SHORT INTEGER is (range -32_768 .. 32_767);

type SHORTSHORTINTEGER is (range -128 .. 127);

type (universalreal) is (range unbounded .. unbounded);

type FLOAT is (digits 6);

-- The predefined operators for this type are as follows

-- function "=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "<" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function ">" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "+" (RIGHT : FLOAT) return FLOAT;
-- function "-" (RIGHT : FLOAT) return FLOAT;
-- function "abs" (RIGHT : FLOAT) return FLOAT;
-- function "+" (LEFT, RIGHT : FLOAT) return FLOAT;
-- function "-" (LEFT, RIGHT : FLOAT) return FLOAT;
-- function "*" (LEFT, RIGHT : FLOAT) return FLOAT;
-- function "/" (LEFT, RIGHT : FLOAT) return FLOAT;
-- function "**" (LEFT : FLOAT; RIGHT : INTEGER) return FLOAT;

-- An implementation may provide additional predefined FLOAT types.
-- It is recommended that the names of such additional types end
-- with FLOAT as in SHORT FLOAT or LONG FLOAT. The specification
-- of each operator for the type universalreal, or for any
-- additional predefined floating point type is obtained by replacing
-- FLOAT by the name of the type in the specification of the
-- corresponding operator of the type FLOAT.

type LONGFLOAT is (digits 15);
type LONG LONGFLOAT is (digits 33);

-81.13-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for VAXELN Ada (Continued).

-- in addition, the following operators are predefined for universal types:

-- function "*" (LEFT : (universal integer);
RIGHT : (universalreal)) return (universal_real);

-- function "*" (LEFT : (universal real);
RIGHT : (universal integer)) return (universal_real);

-- function "/" (LEFT : (universalreal);

-- function (universal_fixed) is
(delta unbound range unbounded .. unbounded);

-- The type universal fixed is predefined. The only operators declared
-- for this type are:

-- function " (LEFT : (any fixedpointtype);
RIGHT : (anyfixed_pointtype)) return (universalfixed);

-- function"/" (LEFT : (any fixedpointtype;
RIGHT : (anyfixedpointtype)) return (universal fixed);

type CHARACTER is

('null, ... 'del');

-- for CHARACTER use -- 128 ASCII character set without holes
-- (0, 1, 2, 3, 4, 5, ..., 125, 126, 127);

for CHARACTER'SIZE use 8;
-- The predefined operators for the type CHARACTER are the same
-- as for any enumeration type.

package ASCII is

end ASCII;

-- Predefined subtypes:

subtype NATURAL is INTEGER range 0 .. INTEGER'LAST;
subtype POSITIVE is INTEGER range 1 .. INTEGER'LAST;

-- Predefined string type:

type string is array(POSITIVE range <>) of CHARACTER;
pragma PACK(STRING);

-81.14-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for VAXELN Ada (Continued).

-- function =" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "<" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function ">" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : STRING) return BOOLEAN;

-- function "&" (LEFT : STRING;
RIGHT : STRING) return STRING;

-- function "&" (LEFT : CHARACTER;
RIGHT : STRING) return STRING;

-- function "&" (LEFT : STRING;
RIGHT : CHARACTER) return STRING;

-- function "&" (LEFT : CHARACTER;
RIGHT : CHARACTER) return STRING;

typeDURATION is (delta 1.0e-4 range -131_072.0 .. 131_072.9999);

-- The predefined operators for the type DURATION are the same as for

-- any fixed point type.

-- The predefined exceptions:

CONSTRAINTERROR : exception;
NUMERICERROR : exception;
PROGRAMERROR : exception;
STORAGEERROR : exception;
TASKING_ERROR : exception;

end STANDARD;

-82-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Gould, Inc. Gould PowerNode Gould PowerNode
Compiler version Aplex 2.1 Model 9080 Model 6080 (or SelConnection)

(under UTX/32 (bare machine)
Version 2.0)

DEGREE OF CONFIGURABILITY

I. Linker Capability:

Individual subprograms may be extracted from packages only.

II. Customization of the Runtime:

- By pragmas
- By compiler switches
- By modifying/replacing the source to selective runtime routines provided by the
compiler vendor with the purchase of the compiler (i.e. device drivers, etc.)
- By modifying the source to the entire runtime (after purchasing it)

Il. Documentation provided to help user configure runtime:

"Aplex" (Gould Ada Compiler) Bare Machine Ada Runtime Library Reference
Manual.

IV. Services to customize the runtime:

None.

V. Cost of runtime source code:

Interested users must call the home office to obtain a quote.

VI. Source of Information: Vendor.

PIWG RESULTS

This information was not supplied by the vendor.

-83-

Guidelines to Select, Configure and Use an Ada Runtimne Environment

GOUild
Host' Goutd Power-node

Target, Goutd Power-node 6080 (or SetConnection)
Version, Aptex 2.1

a%'
CU

CDC'

70000.. . .

65000

60000

550000 0

LA 4500...

>% 40000

35000 i

30000.

25000

20000o

15000 CD

10000 CD

5000 I i i....
+; 4; +; 4) 4) C C +; 0)
rC E E: E r - 0 r W S +

0) 0) 0) 0e0) 4 0) U 0. L
I C% C ap 0

> .9 Go .
L IA. 4) C) U) (I C

L 0 0- C 2 3
E W) L. 0. > C

0) Li G.o N . 0
Z U U W, -

0 4)X 0 I 0I)
U L . C Lii C 0c.

Sum of ALL components = 844600 bytes

0 Component was supp~ied by vendor,

C.'elines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Intermetrics, Inc. VAX-11/785 1750A, ECSPO-RAID
Compiler version 202.08A (under VMS 4.2) Simulator CX-04.001

(bare machine)

DEGREE OF CONFIGURABILITY

I. Linker Capability:

- Individual subprograms and/or data objects may be extracted from packages only.

II. Customization of the Runtime:

- By pragmas
- By linker switches
- By modifying/replacing the source to selective runtime routines provided by the
compiler vendor with the purchase of the compiler (i.e. device drivers, etc.)

III. Documentation provided to help user configure runtime:

- PQ1750A Compilation.System User's Manual
- Retargetg Guide
- RTS B5/C5 Specs

IV. Services to customize the runtime:

- Intermetrics provides services to customize the runtime.
- Cost: Will do the work or help customers on a Time and Materials basis.

V. Cost of runtime source code:

- Comes as part of the product.

VI. Source of Information: Vendor input.

PIWG RESULTS

This information was not supplied by the vendor.

-85-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Inte'rnetrics Incorporatedl
Host i VAX11-785 / VMS 4.5
Target~ 1750A ECSPO-RAID Simutator CX-04.001

Version 202.08A

CD
16800 .

5500 L

5000

4500

-4000

~3500

I-3000

-- 0DC
M 2500 0u o o

2000 uC

1500

1000

500 C

4.) 4J) 4-; P a)

))0)) 0) CD U C.

W.4) 0 C LA 0 Z
L 0. E 0 0 a
o : 4' Q4- j
E L 0.
Go L w 0

1 o~~ U L

-Sun of ALL Components 31,200 bytes

ETa~sking Inctudes 1.1 Rendezvous Management
2, Task Activationl
3. Ta~sk Termination
4, Processor Management

-86-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: 100 microseconds on 1750A using timer-B

Q2: How long, and for what reasons are interrupts disabled?
A2: Less than 100 cycles (e.g., 10 microseconds on a 10MHz chip) for the
timer-B interrupt processing.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: Accepter always runs on caller's stack, thus avoiding many scheduling points.

Q4: What are the restrictions for representation clauses?
A4: There are two restrictions at present time, one will be removed next release:

1) Length and Address clauses fully supported in Fall, 1988.
2) Subcomponent of a record must fit in a single word.

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
A5: Run-until-blocked. Priority queue is implemented as a heap. Pre-emption in some
cases (semi-custom).

Q6: What are the restrictions on pragma INLINE?
A6: Subprogram bodies must be compiled before, and can't be recursive.

Q7: Is code "ROM"able?
A7: Yes (code and read-only data).

Q8: Are machine code inserts supported?
A8: Pragma INTERFACE to assembly code.

09: What object types are supported by pragma SHARED?
A9: Pragma SHARED is not supported.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

- Timer Resolution
- Default stack sizes
- Semaphore operations
- Exception trace
- Terminal I/O
- Memory size, number of page-registers

-87-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MIL.STD-1750A

package SYSTEM is

type ADDRESS is private; -- "-", "/=" defined implicitly;
type NAME is (UTS, MVS, CMS, MILSTD_1750A);

SYSTEMNAME : constant NAME := MILSTD_1750A;

STORAGEUNIT : constant := 16;
MEMORYSIZE : constant := 2**15;
-- In storage units

-- System-Dependent Named Numbers:

MIN INT : constant := INTEGER'POS(INTEGER'FIRST);
MAXINT : constant := INTEGER'POS(INTEGER'LAST);
MAXDIGITS : constant := 9;
MAXMANTISSA : constant := 31;
FINEDELTA : constant := 2.0**(-31);
TICK : constant := 0.0001;

-- Other System-Dependent Declarations

subtype PRIORITY is INTEGER range -127..127;

-- Implementation-dependent additions to package SYSTEM --

NULLADDRESS : constant ADDRESS;
-- Same bit pattern as "null" access value
-- This is the value of 'ADDRESS for named numbers.
-- The 'ADDRESS of any object which occupies storage
-- is NOT equal to this value.

ADDRESSSIZE : constant := 16;
-- Number of bits in ADDRESS objects, = ADDRESS'SIZE, but static.

-- ADDRESSSEGMENTSIZE : constant := 2**16;
-- Number of storage units in address segment

type ADDRESSOFFSET is new INTEGER; -- Used for address arithmetic
type ADDRESSSEGMENT is new INTEGER; -- Always zero on targets with

-- unsegmented address space.

subtype NORMALIZED ADDRESS OFFSET is ADDRESSOFFSET;
-- Range of address offsets returned by OFFSETOF

-88-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MIL-STD-1750A (Continued)

function "+"(addr : ADDRESS; offset : ADDRESS OFFSET) return ADDRESS;
function "+"(offset : ADDRESSOFFSET; addr : ADDRESS) return ADDRESS;

-- Provide addition between addresses and
-- offsets. May cross segment boundaries on targets where
-- objects may span segments.
-- On other targets, CONSTRAINT ERROR will be raised when
-- OFFSETOF(addr) + offset not in NORMALIZEDADDRESSOFFSET.

function "-"(left, right : ADDRESS) return ADDRESSOFFSET;
-- May exceed SEGMENTSIZE on targets where objects may
-- span segments.
-- On other targets, CONSTRAINTERROR
-- will be raised if SEGMENT OF(left) /= SEGMENTOF(right).

function "-"(addr : ADDRESS; offset : ADDRESSOFFSET) return
ADDRESS;

-- Provide subtraction of addresses and offsets.
-- May cross segment boundaries on targets where
-- objects may span segments.
-- On other targets, CONSTRAINT ERROR will be raised when
-- OFFSETOF(addr) - offset not in NORMALIZEDADDRESSOFFSET.

function OFFSET OF (addr : ADDRESS) return NORMALIZEDADDRESSOFFSET;
-- Extract offset part of ADDRESS
-- Always in range O..segsize - 1

function SEGMENT-OF (addr : ADDRESS) return ADDRESSSEGMENT;
-- Extract segment
-- part of ADDRESS
-- (zero on targets with
-- unsegmented address space)

function MAKEADDRESS (offset : ADDRESSOFFSET;
segment : ADDRESS SEGMENT := 0) return ADDRESS;

-- build address given offset and segment.
-- Offset may be > segsize on targets where
-- objects may span segments, in which case it is equivalent
-- to "MAKEADDRESS(0, segment) + offset".
-- On other targets, CONSTRAINT ERROR will be raised when
-- offset not in NORMALIZEDADDRESSOFFSET.

type SupportedLanguageName is (-- Target dependent
-- The following are "foreign" languages:

AIE ASSEMBLER, -- NOT a "foreign" language - uses AIE RTS
UNSPECIFIEDLANGUAGE);

-89-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MIL-STD-1750A (Continued)

-- Most/least accurate built-in integer and float types

subtype LONGESTINTEGER is STANDARD.INTEGER;
subtype SHORTESTFLOAT is STANDARD.FLOAT;

private

type ADDRESS is access INTEGER;
-- Note: The designated type here (INTEGER) is irrelevant.
-- ADDRESS is made an access type simply to guarantee it has
-- the same size as access values, which are single addresses.
-- Allocators of type ADDRESS are NOT meaningful.

NULLADDRESS : constant ADDRESS := null;

end SYSTEM;

-90-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Rational Rational 1000 1750AMIL-STD-1750A
Compiler version 2.0.122 (bare machine)

DEGREE OF CONFIGURABILITY

I. Linker Capability:

- Any part of a library unit being required loads the entire unit.
- Link Time Dead Code Elimination (LTDCE) is currently under development. It is
not available in the current release product, but is scheduled to be available in the
fourth quarter.

II. Customization of the Runtime:

- By pragmas
- By compiler switches
- By linker switches
- By Modifying-Replacing the source to selective runtime routines provided with the
purchase of the compiler (i.e. Device Drivers).
- By modifying the source to the entire runtime (after purchasing it).

The following are excerpts from Rational's "Technical Specification" for the Rational R1000
to MIL-STD-1750A Cross-Development Facility. [20]

Cross-Compiler Performance

The runtime performance is comparable to that of code generated by a mature optimizing
JOVIAL compiler. Runtime performance is measured in terms of both size of object code
and speed of execution.

Optimizations

- Elimination of common subexpressions: Detects redundant expressions and
uses knowledge of the target machine, expression context, loop depth, and
expression frequency to determine which of the feasible common subexpression
repiacements are desirable.
- Code redistribution.
- Strength reduction: Replaces multiplication involving loop counters with
appropriate additions.
-.Compile-time constant arithmetic and conversions, value folding: Performs
arithmetic and logical computations at compile time, and removes dead code.
- Code straightening: Eliminates jumps to jumps.
- Elimination of dead code: Eliminates code that can never be reached by the
program.

-91-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Branch optimization.
- Global register assignment: Allocates frequently referenced locals to
machine registers.
- Peephole optimization: Includes removing redundant loads, stores, and
comparisons and replacing general-case code sequences with shorter or faster
special-case idioms.
- Elimination of constraint checks: Eliminates unnecessary constraint checks
for efficiency. Consider the following constraint checks:

- When assigning a scalar value to a variable, check that the value is within
the declared (subtype) range.
- When accessing a component of an array, check that the index is within the
declared array index range.
- When selecting a component of a record controlled by a discriminant, check
that the discriminant has the correct value.
- When dereferencing an access object, check that the access value is non-
null.

Although these checks can be very expensive, they are essential if the object
code is to be safe; the Suppress pragma is supported, but it is better to retain
the checking code where it is necessary. The compiler eliminates checks that it
can prove unnecessary. Ada programs provide explicit subtype information that
can be used to eliminate many runtime checks. In general, a substantial
percentage of the checks can be eliminated by one or more of these techniques:

- Value tracking: The value to be checked is known, and it is known to be
valid.
- Range tracking: The range of the value can be computed, and it is contained
within the required range. Note that the ranges of expressions can be
synthesized from the ranges of their operands.
- Equivalence propagation: The range of the value is not known numerically,
but it is known algebraically, and the check can be proven satisfied by
algebraic identity.
- Truth propagation: The value is known to be within range because it is a
precondition of the code.

- Store suppression: Deletes an assignment to a variable when it is not
followed by any subsequent reference to the variable before another assignment
or before the variable passes out of scope.

Controlling Optimization

The debugger provides varying degrees of capability depending on optimizations
performed by the code generator. The code generator permits the user to specify the
degree of optimization on a unit-by-unit basis. The following optimization levels can
be specified:

-92-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Leivel 0: Performs only constant folding and algebraic transformations.
- Level 1: Adds peephole optimization and common subexpression elimination on
basic blocks; also optimizes the evaluation ordering of expressions.
- Level 2: Adds everything else except those optimizations expressly called
out in higher levels.
- Level 3: Adds strength reduction.
- Level 4: Adds in-line expansion.

Code Generation Strategy

Many decisions about the runtime representation of program entities are critical to
the performance of an Ada system. The cross-cornpiler performs extensive analysis so
that common special cases can be implemented efficiently. For example:

- Runtime type descriptors (such as array dope vectors) are created only when
they are really needed.
- Record fields are reordered so as to minimize wasted space, satisfy
alignment requirements, and remain efficiently addressable.
- The size of a constrained discriminated record object is determined by the
sizes of active fields in the object, not by the sizes of the fields in the
largest possible object of the unconstrained type.
- Record objects are always allocated contiguously; individual fields are
never allocated on the heap. Record assignment and comparison are performed
using block operations.
- Record and array parameters are passed by reference; array slices are
treated as references rather than copies.
- Local objects of dynamic size are allocated on the stack rather than on the
heap.

Runtime Library

The runtime library provides an efficient implementation of Ada language features,
including exception handling, tasking support, and storage management. Source code for
the runtime library is provided, with rights to an object code sub-license for deliver to third
parties. This ensures that development teams can modify the runtime library if
performance-critical sections of their applications require it or to interface to a specifickernel.

Exceptions

The exception-handling facilities are designed so that little or no cost is incurred in
subpro&rams that have no exception handler. When an exception is raised, the
processing cost depends on whether the exception is propagated out of a rendezvous,
the number of reraises, and the complexity of the handlers.

Tasking Model

Tasking is implemented by the Ada runtimes. Entry parameters are passes as if they
were subprogram parameters. No copying of parameters or argument lists is
performed by the runtime library.

-93-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Stack storage for a task is allocated when a task is activated and is never subsequently
extended. The amount of space allocated can be controlled by the 'Storage-Size
attribute. The stack is deallocated when the task terminates.

The accuracy of the realtime clock and the delay statement is 5 milliseconds.

Storage Management

Access objects are allocated from an access object storage area for which storage is
allocated at the time that the access type declaration is elaborated and deallocated
when the access type declaration passes out of scope. This area is extended as needed
unless a Storage-Size representation clause has been specified for the type, in which
case the size of the collection is fixed.

UncheckedDeallocation is supported; an efficient algorithm adds the deallocated
storage to a list of free cells that are available for subsequent allocations.

Runtime Library Size

The runtime library is packaged to prevent loading unused modules as well as
unnecessary control sections. Storage management occupies less than 1.0 K words,
tasking services about 6.0 K words, and exception handling less than 0.5 K words.
Although the complete library would occupy 7.5 K words, many applications require
only a fraction of the complete capability and thus use much less space.

Real-time Kernel

The real-time kernel provides the support necessary to run programs on a bare 1750A with
or without extended memory. In addition to process initiation and scheduling, it provides a
number of services for use by application programs. These services are described in the
"Kernel Services" subsection below.

Two kernels are provided: a single-process kernel and a multiprogramming kernel. The
single-process kernel provides a small, efficient set of services on top of which a single
program can be run; the linker loads only those parts that are required by the application.
The multiprogramming kernel provides an environment on top of which several programs
can be run; a single copy of this configurable kernel is shared by all programs.

Kernel Interface

The majority of kernel code is written in Ada; performance-critical regions are
written in assembly language. An Ada package is provided to give a user program
access to all services provided by the kernel. Subprograms in this Ada package are
responsible for extensive validity checks on parameters. After validity checks are
performed, a lower lay,-;,contaning the actual kernel service is called. This structure
permits bypassing the validity-checking layer and directly calling the lower-level
service when increased performance is essential.

Source code is provided for both the Ada and assembly-language portions of each
kernel, with rights to an object code sub-license for delivery to third parties.

-94-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Kernel Services

Clock Services

The kernel maintains a real-time clock. The real-time clock is initialized at
system startup and can be read or modified by application programs. The
kernel utilizes the two 1750A hardware timers; one of them can be optionally
allocated to an application program.

Dynamic Memory-Management Services

In addition to Ada's memo.y-management facilities, other programmatic
services are provided. Applications can:

- Request the assignment of additional memory in 4 K word increments.
- Release memory in 4 K word increments.
- Define an already allocated page as a shared one and associate a name with
it.
- Gain access to a shared page by name.
- Relinquish a previous association with a shared page
- Utilize the block protect facilities if they are available.

Interlock Services

Interlocks are low-level primitives that can be used to implement a variety of
!ynchronization, reservation, or communication algorithms among programs.
Examples are monitors, critical regions, and semaphores.

Interrupt Handling

A number of methods are provided for servicing interrupts:

- Using address clauses associates a task entry with an interrupt.
- Invoking a system service identifies an Ada subprogram (or assembly-language
subroutine) as a call tar$et when a specified interrupt occurs. Restrictions
apply when the routine is an Ada subprogram.
- Invoking a system service puts a program into a wait state until the
specified interrupt occurs.

Input/Output Services and Device Drivers

This group of functions addresses I/O beyond the standard Ada facilities:

- Frame input and output either read or write one frame from a Try-like
device. This device can be connected through either the console interface or
an RS232 interface. A frame is defined to be any rumber of bits (up to 16)
that can be transferred in a single I/O operation. The exact number is user
definable.
- A user program can be suspended until a frame arrives from a specified
channel.
- In addition to the language-defined I/O packages, a file I/O package is

-95-

Guidelines to Select, Configure and Use an Ada Runtime Environment

provided that can be adapted to most mass storage or data transfer devices.
The primitive operations for reading a block, writing a block, and checking on
the I/O status must be filled in by the user for the specific device.
- Kernel services are available to enable an application program to control
devices. This includes services to handle interrupts, access device registers,
wait on interrupts, and execute privileged instructions. The application can
also:

- Clear or set a named bit in a discrete register.
- Read a named bit from a discrete register.
- Read or write a full word of a discrete register.
- Check a named discrete bit and, if its status is not as expected, suspend
the program until the bit changes its status.

-Facilities are also provided for a user to install a device driver in the kernel.

Real-time Kernel Size

The single-process kernel varies in size form 0.5 to 1.7 K words, depending on which
parts are required by the application and loaded by the linker. The
multiprogramming kernel is configurable to suit specific application requirements; it
occupies 24 K words if all functions are used. A single copy of this kernel is shared by
all programs.

Debugger

The host/target debugger allows users to debug applications executing on 1750A hardware
or a simulator. Several modes are supported:

- Debugging on the R1000 using an instruction-level simulator.
- Debugging on the target hardware with a small resident debug monitor.
- Debugging on the target hardware using an in-circuit emulator.
These modes will be discussed in turn, because they represent in somewhat chronological
order the way in which an application might be debugged.

Simulator

An instruction-level simulator executes the MIL-STD-1750A instruction set. From
the information provided to it by the linker, the behavior or a particular
implementation of MIL-STD-1750A can be simulated.

In addition to the features described below in the "Debugging Capabilities" section,
these features are supported by the simulator:

-96-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- The simulator is configurable to simulate the particular implementation of
the 1750A required. The simulator can also be configured with instruction
timing data.
- The memory in the simulator is loaded with the load module output by the
linker. The simulator can also write the contents of its memories (that is,
the physical memory, the page registers, the memory-protect RAM, and the
startup ROM) at another address. This state can be compared to the contents of
a range of memory addresses and the variances listed.
- The simulator can write its entire current state into a file for later
restarting. From this file, the simulator can regain all attributes of its
condition at the point where the state was saved and carry on.
- Individual registers, memory locations, and the real-time clock can be
monitored and their values output when certain values are obtained or the value
changes. The real-time clock can be used as a breakpoint.

Host/Target Communications

To be able to make use of host/target debugging facilities offered by the Rational
Environment, the target computer must be made accessible to the host R1000.

-Download capability for particular 1750A implementations or configurations is
provided as necessary. Downloading can be done to 1750A hardware, to an in-circuit
emulator, or to an industry-standard PROM programmer. The standard supported
protocols are Ethernet with TCP/IP or RS232 operating up to 19,200 baud.
Customers with other communications requirements should contact a Rational
representative.

It may be necessary to install a small debug monitor on the target computer,
depending on the degree of hardware support.

User Debugging Model

The host/target debugger allows users to debug programs running on the 1750A from
within the Rational Environment. All the facilities that are available when debugging
a program executing on an R1000 carry over to host/target debugging on the 1750A.
Because host/target debugging is integrated into the Rationa Environment, the
interface is the same as when debugging a proram executing on the R1000. The user
benefits from a multiwindow display containing debugger information, source code
corresponding to program location, and the output of the program itself. In this
situation, input and output from the program running on the 1750A are redirected to
the Environment. When this redirection is inconvenient - when a different type of
display is required, for example - a terminal can be connected as the 1750A console
and used as the program's 1/0 device. In some applications, there will be no console.

The user must compile the Ada unit with the debug switch set in order to do
source-level host/target debugging. Code generated with debugging enabled can be
run without the debugger; the generated code has the same performance
charac+ ristics.

-97-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Executing and Debugging a Program on the Target 1750A

The debugger has two components, an R1000 part and a part that resides on
the target 1750A. Application program execution can be initiated from the
Rational Environment or directly on the target 1750A. In either case, the
application running on the 1750A can be started with or without debugger
control. When initiated from the R1000 under debugger control, the
application waits for a command before elaboration. When initiated on the
1750A under debugger control, it also stops before elaboration and awaits a
command. The R1000 part of the debugger can then be started and attached to
the 1750A-resident portion. Debugging then proceeds as in the first case.

Debugging After Program Initiation

Even ff the application was initiated without debugging, it is possible to invoke
the R1000 host debugger and have it subsequently control the application
executing on the 1750A.

Debugging a Memory Image

Additional debugger facilities permit high-level interrogation of the memory
image of a program that has terminated abnormall. A typical use would be to
examine the program state after an unhandled exception has caused
termination of the program.

Multiprogramming Debugging

Multiple-program debugging is supported. Two or more separate debugger
jobs can be run at the same time, each controlling a different 1750A process
and each having its own window on the R1000 terminal. The programs
themselves can be run on the same or different target 175OAs.

Debugging Capabilities

The 1750A host/target debugger provides the following capabilities:

- Display of task call stacks.
- Display of task state.
- Task control. The debugger provides two task control models:

- Separate control: A single task can stop at a breakpoint or exception event
while others continue to run.
-Synchronous control: A breakpoint or exception event causes all the tasks
in the program to stop.

-98-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Display and modification of program data values.
- Display of processor registers and memor
- Dis lay of location in source program code.
- Ada and machine-level breakpointing.
- Ada and machine-level stepping.
- Controlling the catching and propagation of exceptions.-D slay of program history.
- Perormance monitoring.
- Tracing.
- Disassembly.

Levels of Debugging

The debugger provides varying degrees of capability depending on the optimizations
performed by the code generator; the precision with which the debugger can locatedobjects decreases as code is more highly optimized. To ensure adequate flexibility inthe development and debugging of large applications, the optimization level can bespecified on a unit-by-unit basis, as described in the "Optimizations" subsection.

The devee of optimization can also be controlled by specifying one of three levels of
debugging:

- None: No debug tables are created and no attempt is made to limit
optimizations.
- Partial: The ability to display the value of formal parameters ispreserved. There are no restriction on optimizations; the ability to display
objects and determine program locations is reduced in an amount determined by
the optimization setting.
- Full: Optimizations that prevent accurate evaluation of objects ordetermination of source location are inhibited. Automatic in-lining isdisabled, and there is no code motion across statement boundaries and no
reduction of object lifetimes.

Support for In-Circuit Emulators

The host/target debugger also supports debugging through a Tektronix 8540 in-circuitemulator. The 1750A is controlled by the emulator, and RIO host debuggercommands are translated for the 8540, which in turn passes results back to the R1000.Thus the interaction can proceed using the RIOOO high-level debugging model, or itcan be treated at a lower level by using the emulator locally. In both cases, theemulator enables the developer to run the 1750A application at speed on the
processor.

The host/target debugging design allows some flexibility in the choice of in- circuitemulators. Minimal changes to the software allow support for otherindustry-standard emulators. Customers with other models should contact a Rational
representative for more details.

Other Components

-99-

Guidelines to Select, Configure and Use an Ada Runtime Environment

To facilitate the production of real-time applications, an assembler and a linker are
provided. These facilities enable developers to construct mixed-language applications.

Assembler

The assembler provides prorammers with a powerful set of pseudo-operations,
including a macro capability. MIL-STD-1750A mnemonics are supported.

The macro facility is integrated with the assembler itself as opposed to a
preprocessing facility. It allows the passing of arguments and the definition of default
argument values. A submacro directive is also available for defining a local macro for
use within a macro body. The assembler also offers a pseudo-operation set providing
programmers with a powerful capability to control the assembly process. Assembler
directives include:

- Block conditional assembly
- Forward or backward branching to a label at assembly time
- Looping
- Unconditional exit from a loop
- Support for base registers
- Control section definition
- User-invoked origin
- Listing of control directives

Linker

The linker collects object module outputs into a load module potentially covering the
entire physical address space, including the page registers, the memory-protect RAM,
and the initial address state. The problem of switching address states is handled
automatically by the linker through the insertion of transit routines.

Directives permit the inclusion of entire object files, specified modules, or all modules
except those specified. Any object file can be searched as a library to satisfy external
references. The tar.et memory configuration can be described to the linker so that
allocation is compatible with the memory size, number of page registers, and reserved
areas of the target.

The extended-memory linker generates an alphabetical symbol list, a symbol
cross-reference, and an allocation map. The map shows the instruction and operand
external symbols for each module, the date/time of translation of each module, and
the name/version of its translator (Ada, JOVIAL, or assembler). A symbol table file
is produced.

The linker has the capability of collecting several modules and producing either an
absolute load image or a new relocatable module with user-specified entry points and
external references exposed from the contained modules. The linker optionally
produces a relocatable module that contains only the entry points resulting from a
link (either a new relocatable or lad image link). The linker also optionally produces
a map of the storage allocated by cluster and control section; each is described with a
starting address, an ending address, and a length.

-100-

Guidelines to Select, Configure and Use an Ada Runtime Environment

The cross-compiler translates relocatable modules for packages such that each
top-level subprogram within the package is contained in a separate control section.
This permits selective loading only if the subprogram is required. The compiler
distinuishes control sections as containing instructions, data, or literals. The
compiler supports control sections up to 64 K words each and supports calls, using the
above-mentioned transit routines provided by the linker, to control sections from
other compilation units that reside in an address state other than that containing the
current module.

The linker supports both memory-resident and auxiliary device-resident overlays. It
supports multiple control section modules, each of which can have independent
attributes, entry points, or external references.

By default, control sections are clustered by attribute, but control sections can be
combined by name, module, or control section attribute, clusters, control sections,
and modules can be placed at a user-specified location. The linker permits
specification of clusters that are to be shared across address states.

Other features include:

- Extended-memory links (greater than 64 K words) and out-of-state references
for code are supported.
- Multiple address state programs, multiple programs per address state, and
multiple program in multiple address states are supported.
- A limiting address can be defined; exceeding this address causes a warning
diagnostic to be issued at link time.
- All locations, values, and space sizes can be specified by relocatable or
absolute expressions.
- Memory protection is supported. Protection attributes can be defined by
control section and cluster.
- The linker optionally generates checksums/CRC values to permit load
validation, periodic memory-destruction tests, and swap-out elimination.

Reusable Software Components

Rational provides a library of packages that reduce implementation, test, and
debugging time by providing reusable parts when working on the R1000. As part of
the I750A Cross-Development Facility, a source license is provided so that these
components can be incorporated in the applications running on a 1750A that are
developed on the R1000. These packages and procedures include:

- Bounded-String
- Concurrent-MapGeneric
- LisL.Generic
- Map-Generic
- Queue-Generic
- SeLGeneric
- Stack-Generic
- StringMapGeneric
- String.Table
- String.Utilities

-101-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- TableFormatter
- TableSortGeneric
- Time-Utilities
- Unbounded-String

Relation to Other Products

The 1750A can be connected to the R1000 using an RS232 port without obtaining
other products. If an Ethernet connection is desired, Rational Networking isavailable.

For projects requiring code delivery with some other compiler, the 1750A
Cross-Development Facility can be used during the development phase for efficient
host.taret debuggingand rapid turnaround. Actual code delivery can be done with
the Rational Target Build Utility, which enables the downloading of Ada source to
another system for compilation. The Target Build Utility provides a complete
change-tracking history on the R1000 so that the minimum number of units is
downloaded and recompiled. In addition, a compilation and link script is downloaded
for batch submission on the other system.

III. Documentation provided to help user configure runtime:

- Rational MIL-STD-1750A Cross-development Facility Manual

IV. Services to customize the runtime:

Rational offers an implementation program with each CDF. The plan typically
includes installation, training, and site specific customization of the CDF. The plan
can be expanded to include runtime customization. The cost of the implementation
plan for the MIL-STD-1750A CDF for a R1000 model 20 is $15,000.

V. Cost of runtime source code:

- The runtime source code is provided with the CDF product. The cost of the
MIL-STD-1750A CDF for a R1000 model 20 is $49,000.

VI. Source of Information: Vendor Input

-102-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Rational
Host : Rational RIO00

Target MIL-STD-1750A

Version 2.0.122

2000 N

, 1500 -,. .

>- 1000 U-) "./Z A;f.

500 0 CD

01 -4

E E E E E
)J CD) 1)))) U

o Q)

0x z~ C)
U L W C

0 y
C

- Sum of ALL Components = 6,402 boytes**

Includes task creation, activation,

and termination

** See next page.

Note: the actual granularity is much finer

than represented here,

-103-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Vendor Supplied Component Description

These components of the runtime for the MIL-STD-1750A have been broken down into
further storage requirements for code, data, and constant.

Processor Management 614 bytes code
162 bytes constant
236 bytes data

Exception Management 98 bytes code
92 bytes constant

Rendezvous Management 1234 bytes code
2 bytes data

Commonly Called Code Sequences 1376 bytes code
4 bytes constant

- 84 bytes data

The maximum RTE including data: - 5822 bytes code
258 bytes constant
322 bytes data

All sizes are in bytes. The actual granularity is much finer than represented here.

104-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

QI: What is the resolution of the clock used for delay statements?
Al: 100 microseconds

Q2: How long, and for what reasons are interrupts disabled?
A2: Interrupts are disabled in time critical sections of the runtime. This is an important and
complicated area and Rational would welcome the opportunity to discuss your needs in this
area. For additional information please contact the ational sales representative for your
area.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: Rational make optimizations which reduce the number of context switches required to
perform a rendezvous in which the accepter's accept statement or accept alternative (in the
case of a select wait) contains no associated statements. For example:

begin
accept e;

end;
or

begin
accept e(P1 :T1; P2: T2; ...);

end;
or

select
accept e;

or
accept el(P1 : T1; P2: T2; ...);

end select.

Note that depending on the path the selective wait takes, it is the form of that arm which is
being taken which determines if this optimization can be performed.

04: What are the restrictions for representation clauses?
A4: The MIL-STD-1750A cross-compiler supports the following representation clauses
(the following are excerpts from Appendix F, Rational MIL-STD-1750A [23]):

(F.1.5.) Representation Clauses

- Length clauses:

for AccessType'StorageSize use X;

If X is static and equal to zero, no collection is allocated. Any attempt to evaluate an
allocator will raise the predefined Storage-Error exception. (Other values of X, which
need not be static, are honored.)

-105-

Guidelines to Select, Configure and Use an Ada Runtime Environment

for DiscreteType'Size use X;

for Task.Object'StorageSize use X;

for Task..Type'Storage-Size use X;

for FixedType'Small use X;

- Record representation clauses: The compiler supports both full and partial representation
clauses for both discriminated an undiscriminated records.

- Enumeration representation clauses.

(F.1.6.) Restrictions on Array and Record packing and Record Representation Clauses

- Arrays: Packed arrays of discretes (Integer and Enumeration types, including Booleans)
are supported. Components of packed arrays occupy the minimum possible number of bits,
which may range from 1 through 16.

- Records: A record field can consist of any number of bits between 1 and 16, inclusive;
otherwise, it must be an integral number of words.

- Change of representation: Change of representation is supported wherever it is implied by
support for representation specifications. In particular, implicit or explicit type conversions
between array types or record types may cause packing or unpacking to occur; conversions
between related enumeration types with different representations may result in table
lookup operations.

The following example shows support for a change of representation of an array:

type Arr is array (1..10) of Boolean;
type Brr is new Arr;
pragma Pack (Brr)

X : Arr := (1..10 = > false); Y : Brr:= Brr (X);

Change of representation occurs in the type conversion to Brr.

(F.1.7.) Names Denoting ImplementationDependent Components

- There are no user-visible implementation names.

(F.1.8.) Interpretation of Expressions That Appear in Address Clauses

- Address clauses are not supported at this time.

(F.1.9.) Unchecked Conversion

- The target type of an unchecked conversion cannot be unconstrained array type or an
unconstrained discriminated type.

-106-

Guidelines to Select, Configure and Use an Ada Runtime Environment

(F.I.10.) Machine Code

- Machine-code insertions are not supported at this time.

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
A5: Preemptive scheduling.

Q6: What are the restrictions on pragma INLINE?
A6: Subprograms that require elaboration checks will not be inlined.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: Machine code insertion is not supported at this time.

Q9: What object types are supported by pragma SHARED?
A9: Pragm SHARED is supported for 16 bit discrete and fixed point types and access
types.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

Default stack sizes: Yes
Semaphore operations: Yes
Exception trace: Under control of the debugger
Fast interrupt entry: Yes
Terminal I/0: Output only

Additional items:

- Heap size.

-107-

]I

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MIL-STD-1750A

package SYSTEM is

type Name is (MIL-STD-1750A);
SystemName : constant Name := MIL-STD-1750A;

Storage Unit : constant := 16;
MemorySize : constant := 2 ** 16;

Min _Int : constant := -(2 ** 15);
MaxInt : constant := +(2 ** 15) - 1;

Max Digits : constant := 9;
MaxMantissa : constant := 31;
Fine Delta : constant := 2.0 ** (-31);
Tick-: constant := 1.OE-04;

subtype Priority is Integer range 1 .. 254;

type Address is private;

AddressZero : constant Address;

function "+" (Left : Address; Right : Integer) return Address;
function "+" (Left : Integer; Right : Address) return Address;
function "-" (Left : Address; Right Address) return Integer;
function "-" (Left : Address; Right Integer) return Address;

function 1< (Left, Right : Address) return Boolean;
function "<=" (Left, Right : Address) return Boolean;
function ">" (Left, Right : Address) return Boolean;
function "<=" (Left, Right : Address) return Boolean;

function To Address (X : Integer) return Address;
function To-Integer (X : Address) return Integer;

private

end System;

-108-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the MIL-STD-1750A

package STANDARD is

type *UniversalInteger* is (universal-integer] ...
type *UniversalReal* is [universal real] ...
type *Universal-Fixed* is.[universalfixed] ...
type Boolean is (False, True);
type Integer is range -32_768 .. 32_767;
type Float is digits 6 range -1.70141183460469E+38 .. 1.70141163178060E
type LongFloat is digits 9 -1.70141183460469E+38 .. 1.70141183460160E+

range
type Duration is delta 6.10351562500000E-05

range -1.31072000000000E+05 .. 1.3107999938965E+05;
subtype Natural is Integer range 0 .. 32_767;
subtype Positive is Integer range 1 .. 32_767;

type String is array (Positive range <>) of Character;
Pragma Pack (String);
Package Ascii is

end Ascii;

Constraint Error : exception;
Numeric-Error : exception;
Storage-Error : exception;
TaskingError : exception;
ProgramError : exception;

type Character is ...

end Standard;

-109-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Rational Rational 1000 68020, Motorola 68020
Compiler version 2.030 (bare machine)

DEGREE OF CONFIGURABILITY

I. Linker Capability:

- Any part of a library unit being required loads the entire unit.
- Link Time Dead Code Elimination (LTDCE) is currently under development. It is
not available in the current release product, but is scheduled to be available in the
fourth quarter (88).

II. Customization of the Runtime:

- By pragmas
- By compiler switches
- By linker switches
- By Modifying-Replacing the source to selective runtime routines provided with the
purchase of the compiler (i.e. Device Drivers).
- By modifying the source to the entire runtime (after purchasing it).

The following excerpts are from Rational's 'Technical Specification" for the Rational R1000
to M68000 Family Cross-Development Facility. [19]

Cross-Compiler Performance

The runtime performance is comparable to that of code generated by a mature optimizing
FORTRAN compiler. Runtime performance is measured in terms of both size of object
code and speed of execution.

Optimizations

1. Machine-independent optimizations: The cross-compiler performs these
traditional machine-independent code transformations:

- Values and variables: These transformations affect the handling of values and
variables:

-110-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Context determination: Determines context-dependent information that is
used to guide optimization policies in later optimization phases.
- Lifetime analysis: Creates a conflict graph to identify which variables
must exist simultaneously.
- Constant fulling: Performs arithmetic and logical computations at compile
time and removes dead code.
- Algebraic transformations: Simplifies certain algebraic or logical
expressions and transforms expressions into standard formats for more efficient
processing in later optimization phases.
- Value tracking: Substitutes a value for a reference to a variable where the
variable is known to have a specific value. This value can then participate in
constant folding.
- Elimination of assignment of unreferenced values: Deletes an assignment to
a variable when it is not followed by any subsequent reference to the variable
before another assignment or before the variable passes out of scope.
- Elimination of dead variables: Does not allocate storage for unused
variables. The cross-compiler recognizes when two variables can share the
same storage (because they are never simultaneously active), and it recognizes
when a variable is temporarily dead.

- Code motion: These transformations move code, a process that is more difficult in
Ada than in other languages because of the rules governing the interaction between
code motion and exceptions; in general, code motion can be done only in conjunction
with range tracking.

- Flow and call graph construction: Constructs a flow graph for each
subprogram and a call graph for the entire compilation unit.
- Elimination of common subexpressions: Detects redundant expressions and
uses knowledge of the target machine, expression context, loop depth, and
expression frequency to determine which of the feasible common subexpression
replacements are desirable.
- Cross-jumping: Identifies identical code sequences and trades off the use
of a jump for a smaller sequence of instructions.
- Elimination of dead code: Eliminates code that can never be reached by the
program.
- Loop strength reduction: Replaces multiplication involving loop counters
with appropiate additions.
- Tail recursion elimination: Replaces tail recursion with the appropriateloop.

2. Elimination of constraint checks: Efficiency dictates the elimination of
unnecessary constraint checks, consider the following constraint checks:

- When assigning a scalar value to a variable, check that the value is within
the declared (subtype) range.
- When accessing a component of an array, check that the index is within the
declared array index range.
- When selecting a component of a record controlled by a discriminant, check
that the discriminant has the correct value.
- When dereferencing an access object, check that the access value is nonnull.

-111-

Guidelines to Select, Configure and Use an Ada Runtime Envi,'onment

Although these checks can be very expensive, they are essential if the object code is to
be safe; the Suppress pragma is supported, but it is better to retain the checking code
where it is necessary. The compiler eliminates checks that it can prove unnecessary.
Ada programs provide explicit subtype infcrmation that can be used to eliminate
many runtime checks. In general, a substantial percentage of the checks can be
eliminated by one or more of these techniques:

- Value tracking: The value to be checked is known, and it is known to be
valid.
- Range tracking: The range of the value can be computed, and it is contained
within the required range. Note that the ranges of expressions can be
synthesized from the ranges of their operands.
- Equivalence propagation: The range of the value is not known numerically,
but it is known algebraically, and the check can be proven satisfied by
algebraic identity.
- Truth propagation: The value is known to be within range because it is a
precondition of the code.

3. 680x0-Specific Optimizations: The cross-compiler performs these additional
machine-specific optimizations where appropriate:

- Mapping of local variables onto registers: Allocates frequently referenced
locals to machine registers.
- Register targeting: Organizes the intermediate results in a way that will
cause the final result to be computed directly in the appropriate register when
the result of a computation must be in a certain register (for example, a
parameter or result register.
- Determination of evaluation order: Minimizes the temporary register
requirements of expressions.
- Short-circuit evaluation: Minimizes the number of tests in compound Boolean
expressions without side effects.
-Peephole optimizations: Include removing redundant loads, stores, and
comparisons; replacing general-case code sequences with shorter or faster
special-case idioms; and eliminating jumps to jumps.
- Elimination of entry/exit protocol for simple procedures: Simplifies in the
following ways: if a procedure does not declare dynamic locals, no stack frame
pointer is needed; if it declares no locals, the stack need not be moved; if it
contains no inner calls, the static link can be left in a register.
- Automatic in-lining of static subprogram calls: Expands in-line
(independent of the Inline pragna) subprogram calls within a compilation unit
where time/space tradeoffs warrant.

Controlling Optimization

The debugger provides varying degrees of capability depending on optimizations
performed by the code generator. The code generator permits the user to specify the
degree of optimization on a unit-by-unit basis. The following optimization levels can
be specified:

-112-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Level 0: Performs only constant folding and algebraic transformations.
- Level 1: Adds peephole optimization and common subexpression elimination
within basic blocks; also optimizes the evaluation ordering of expressions.
- Level 2: Adds everything else except those optimizations expressly called
ouL in higher levels.
- Level 3: Adds strength reduction and tail recursion removal.
- Level 4: Adds in-line expansion.

Code Generation Strategy

Many decisions about the runtime representation of program entities are critical to
the performance of an Ada system. The cross-compiler performs extensive analysis so
that common special cases can be implemented efficiently. For example:

- Runtime type descriptors (such as array dope vectors) are created only when
they are really needed.
- Record fields are reordered so as to minimize wasted space, satisfy
alignment requirements, and remain efficiently addressable.
- The size of a constrained discriminated record object is determined by the
sizes of active fields in the object, not by the sizes of the fields in the
largest possible object of the unconstrained type.
- Record objects are always allocated contiguously; individual fields are
never allocated on the heap. Record assignment and comparison are performed
using block operations.
- Record and array parameters are passed by reference; array slices are
treated as references rather than copies.
- Local objects of dynamic size are allocated on the stack rather than on the
heap.

Runtime Library

The runtime library provides an efficient implementation of Ada language features,
including exception handling, tasking support, and storage management. Source code for
the runtime library is provided, with rights to an object code sub-license for delivery to third
parties. This ensures that development teams can modify the runtime library if
performance-critical sections of their applications require it or to interface to a specific

Exceptions

The exception-handling facilities are designed so that little or no cost is incurred in
subprograms that have no exception handler. When an exception is raised, the
processing cost depends on whether the exception is propagated out of a rendezvous,
the number of reraises, and the complexity of the handlers.

Tasking Model

Tasking is implemented by the Ada runtimes. Entry parameters are passes as if they
were subprogram parameters. No copying of parameters or argument lists is
performed by the runtime library.

-113-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Stack storage for a task is allocated when a task is activated and is never subsequently
extended. The amount of space allocated can be controlled by the 'Storage-Size
attribute. The stack is deallocated when the task terminates.

Storage Management

Access objects are allocated from an access object storage area for which storage is
allocated at the time that the access type declaration is elaborated and deallocated
when the access type declaration passes out of scope. This area is extended as needed
unless a Storage-Size representation clause has been specified for the type, in which
case the size of the collection is fixed.

UncheckedDeallocation is supported; an efficient algorithm adds the deallocated
storage to a list of free cells that are available for subsequent allocations.

Real-time Kernel

Rational supplies a kernel interface - an Ada specification - providing all facilities required
by the runtime library. Many customers already have hardware configurations and kernel
operating systems in place, either developed as proprietary products or obtained from
third-party vendors. To develop applications for a specific kernel with the M68000 Family
Cross-Development Facility, the user provides a body for the kernel services specification.
This body implements the semantics and issues calls appropriate to the specific user's
kernel.

Because source code for the runtime library is provided, customization of the runtime
library for a specific kernel is also possible. Rational provides implementaLcn and
consulting assistance in tailoring the Cross-Development Facility to specific kernels.

Debugger

The host/target debugger allows users to debug applications executing on 680x0 hardware.
Debugging can be done on "bare" target hardware with a small resident debug monitor, or
an in-circuit emulator can be used.

Host/Target Communications

To be able to make use of host/target debugging facilities offered by the Rational
Environment, the target computer must be made accessible to the host R1000.
Download capability for particular 680X0 implementations or configurations is
provided as necessary. Downloading can be done to 680X0 hardware, to an in-circuit
emulator, or to an industry-standard PROM programmer. The standard supported
protocols are Ethernet with TCP/IP or RS232 operating up to 19,200 baud.
Customers with other communications requirements should contact a Rational
representative.

It may be necessary to install a small debug monitor on the target computer,
depending on the degree of hardware support.

User Debugging Model

-114-

Guidelines to Select, Configure and Use an Ada Runtime Environment

The host/target debugger allows users to debug programs running on the 680X0 from
within the Rational Environment. All the facilities that are available when debugging
a program executing on an R1000 carry over to host/target debugging on the 680X0.
Because host/target debugging is integrated into the Rational Environment, the
interface is the same as when debugging a program executing on the R1000. The user
benefits from a multi-window display containing debugger information, source code
corresponding to program location, and the output of the program itself. In this
situation, input and output from the program running on the 680X0 are redirected to
the Environment. When this redirection is inconvenient - when a different type of
display is required, for example - a terminal can be connected as the 680X0 and used
as the program's I/O device.

The user must compile the Ada unit with the debug switch set in order to do
source-level host/target debugging. Code generated with debugging enabled can be
run without the debugger; the generated code has the same performance
characteristics.

Executing and Debugging a Program on the Target 680X0

The debugger has two components, an R1000 part and a part that resides on
the target 680X0. Application program execution can be initiated from the
Rational Environment or directly on the target 680X0. In either case, the
application running on the 680X0 can be started with or without debugger
control. When initiated from the R1000 under debugger control, the
aplication waits for a command before elaboration. When initiated on the

OXO under debugger control, it also stops before elaboration and awaits a
command. The R1000 part of the debugger can then be started and attached to
the 680X0-residenL portion. Debugging then proceeds as in the first case.

Debugging After Program Initiation

Even if the application was initiated without debugging, it is possible to invoke
the R1000 host debugger and have it subsequently control the application
executing on the 680X0.

Debugging a Memory Image

Additional debugger facilities permit high-level interrogation of the memory
image of a program that has terminated abnormally. A typical use would be to
examine the program state after an unhandled exception has caused
termination of the program.

Multiprogramming Debugging

Multiple-program debugging is supported. Two or more separate debugger
jobs can be run at the same time, each controlling a different 60X0 process
and each having its own window on the R1000 terminal. The programs
themselves can be run on the same or different target 680X0s.

Debugging Capabilities

-115-

Guidelines to Select, Configure and Use an Ada Runtime Environment

The 680X0 host/target debugger provides the following capabilities:

Display of task call stacks.
Display of task state.
Task control. The debugger provides two task control models:

- Separate control: A single task can stop at a breakpoint or exception event
while others continue to run.
- Synchronous control: A breakpoint or exception event causes all the tasks
in the program to stop.

- Display and modification of program data values.
Display of processor registers and memory.
Display of location in source program code.
Ada and machine-level breakpointing.
Ada and machine-level stepping.
Controlling the catching and propagation of exceptions.
Display of program history.
Peormance monitoring.

- Tracing.
Disassembly.

Levels of Debugging

The debugger provides varying degrees of capability depending on the optimizations
performed by the code generator; the precision with which the debugger can located
objects decreases as code is more higly optimized. To ensure adequate flexibility in
the development and debugging of large applications, the optimization level can be
specified on a unit-by-unit basis, as described in the "Optimizations" subsection.

The degree of optimization can also be controlled by specifying one of three levels of
debugging:

- None: No debug tables are created and no attempt is made to limit
optimizations.
- Partial: The ability to display the value of formal parameters is
preserved. There are no restriction on optimizations; the ability to display
objects and determine program locations is reduced in an amount determined by
the optimization setting.
- Full: Optimizations that prevent accurate evaluation of objects or
determination of source location are inhibited. Automatic in-lining is
disabled, and there is no code motion across statement boundaries and no
reduction of object lifetimes.

Support for In-Circuit Emulators

The host/target debugger also supports debugging through an in-circuit emulator.
The 680X0 is controlled by the emulator, and-R1000 host debugger commands are
translated for the emulator, which in turn passes results back to the R1000. Thus the
interaction can proceed using the R1000 high-level debugging model, or it can be

-116-

Guidelines to Select, Configure and Use an Ada Runtime Environment

treated at a lower level by using the emulator locally. In both cases, the emulator
enables the developer to run the 680X0 application at speed on the processor.

The host/target debugging design allows some flexibility in the choice of in- circuit
emulators. Customers with other models should contact a Rational representative for
more details.

Other Components

To facilitate the production of real-time applications, an assembler and a linker are
provided. These facilities enable developers to construct mixed-language applications.

Assembler

The assembler provides programmers with a powerful set of pseudo-operations,
including a macro capabiliiy. Features include:

- Macro expansion capability

- Number of arguments function
Automatic creation of local symbols

- Argument concatenation

- Multiple relocatable program sections
- List files available on demand
- Conditional assembly
- Macro construct for statement iteration (looping)
- Local symbols
- Absolute and relocatable assembly
- Code and data alignment

Linker

The linker collects object modules produced by the code generator or assembler into
a load module. This load module is a memory image of some portion of the logical
address space for the program. A set of linker commands enables the user to specify
the alignment and ordenng of program sections and modules. Both absolute and
relocatable load modules can be produced. The linker is structured to provide
flexibility in the format of the final load module. This allows adaptation of the load
module to the requirements of a particular customer's loader and operating system
kernel. List files produced include a memory map, a symbol table file, and a
cross-reference.

Reusable Software Components

Rational provides a library of packages that reduce implementation, test, and
debugging time by providing reusable parts when working on the R1000. As part of
the 680X0 Cross-Development Facility, a source license is provided so that these
components can be incorporated in the applications running on a 680X0 that are
developed on the R1000. These packages and procedures include:

-117-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Bounded-String
- Concurrent.MapGeneric
- List-Generic
- Map-Generic
- Queue-Generic
- Set-Generic
- Stack-Generic
- StringMapGeneric
- String-Table
- String-Utilities
- TableFormatter
- TableSortG.neric
- Time-Utilities
- Unbounded.String

Relation to Other Products

The 680X0 can be connected to the R1000 using an RS232 port without obtaining
other products. If an Ethernet connection is desired, Rational Networking isavailable.

For projects requiring code delivery with some other compiler, the M68000 Family
Cross-Development Facility can be used during the development phase for efficient
host/target debugging and rapid turnaround. Actual code delivery can be done with
the Rational Target Build Utility, which enables the downloading of Ada source to
another system for compilation. The Target Build Utility provides a complete
change-tracking history on the R1000 so that the minimum number of units is
downloaded and recompiled. In addition, a compilation and link script is downloaded
for batch submission on the other system.

III. Documentation provided to help user configure runtime:

- Rational MC68020 Cross-Development Facility Manual

IV. Services to customize the runtime:

Rational offers an implementation program with each CDF (Cross Development
Facility). The plan typically includes installation, training, and site specific
customization of the CDF. The plan can be expanded to include runtime
customization. The cost of the implementation plan for the MC68020 for a R1000
model 20 is $15,000.

V. Cost of runtime source code:

- The runtime source code is provided with the CDF product. The cost of the
MC68020 CDF for a R1000 model 20 is $49,000.

VI. Source of Information: Vendor Input

-118-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Roationcd
Host :RQtIona(R1000

Target Motorota 68020
)K

Version 2.0.30)k
)KN

3000 A 0

2500 cu

'-i- 2000 C

-1500M

1000)K
A

500 -4)

0 C

0) 0) 0) 0) 0

L0) C lL
L 0 d3

0 IA P

I U U 0) L
0 X -_0L

U L W C
0.' L.)

-Sum of ALL Components = 9144 bytesww

*Inctudes task creation, activation,
and termination

**) See next page.

Note: the actual granularity is much finer
than represented here.

Guidelines to Select, Configure and Use an Ada Runtime Environment

Vendor Supplied Component Description

These components of the runtime for the Motorola 68020 have been broken down into
further storage requirements for code, data, and constant.

Processor Management 1770 bytes code
129 bytes constant
376 bytes data

Exception Management 142 bytes code
88 bytes constant

Commonly Called Code Sequences 2044 bytes code
711 bytes constant
84 bytes data

The maximum RTE including data: 7756 bytes code
928 bytes constant
460 bytes data

All sizes are in bytes. The actual granularity is much finer than represented here.

-120-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: 8 microseconds

Q2: How long, and for what reasons are interrupts disabled?
A2: Interrupts are disabled in time critical sections of the runtime. This is an inportant and
complicated area and Rational would welcome the opportunity to discuss your needs in this
area. For additional information please contact the Rational sales representative for your
area.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: Rational makes optimizations which reduce the number of context switches required to
perform a rendezvous in which the operator's accept statement or accept alternative (in the
case of a select wait) contains no associated statements. For example:

begin
accept e;

end;
or

begin
accept e(P1 :T1; P2: T2; ...);

end;
or

select
accept e;

or
accept el(P1 : T1; P2 : T2; ...);

end select.

Note that depending on the path the selective wait takes, it is the form of that arm which is
being taken which determines if this optimization can be performed.

04: What are the restrictions for representation clauses?
A4: The MC68000 cross-compiler supports the following representation clauses:

(F.l.5.) Representation Clauses

- Length clauses:

for Access.Type'StorageSize use X;

If X is static and equal to zero, no collection is allocated. Any attempt to evaluate an
allocator will raise the predefined StorageError exception. (Other values of X, which
need not be static, are honored.)

-121-

Guidelines to Select, Configure and Use an Ada Ruhtime Environment

for DiscreteType'Size use X;

for FixedType'Small use X;

for TaskObject'StorageSize use X;

for TaskType'StorageSize use X;

- Record representation clauses: The compiler supports both full and partial representation
clauses for both discriminated an undiscriminated records.

- Enumeration representation clauses.

-Address clauses for objects.

(F.1.6.) Restrictions on Array and Record packing and Record Representation Clauses

- Arrays: Packed arrays of discretes (Integer and Enumeration types, including Booleans)
are supported. Components of packed arrays occupy the minimum possible number of bits,
which may range from 1 through 24.

- Records: A record field can consist of any number of bits between 1 and 32, inclusive;
otherwise, it must be an integral number of words.

- Change of representation: Change of representation is supported wherever it is implied by
support for representation specifications. In particular, implicit or explicit type conversions
between array types or record types may cause packing or unpacking to occur; conversions
between related enumeration types with different representations may result in table
lookup operations.

The following example shows support for a change of representation of an array:

type Arr is array (1..10) of Boolean;
type Brr is new Arr;
pragma Pack (Brr)
X:Arr: (1..10 =>false);
Y: Brr:= Brr (X);

Change of representation occurs in the type conversion to Brr.

(F.1.7.) Names Denoting Implementation..Dependent Components

-There are no user-visible implementation names.

(F.1.8.) Interpretation of Expressions That Appear In Address Clauses

-Address clauses can be used with statically allocated objects.

(F.1.9.) Unchecked Conversion

-122-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- The target type of an unchecked conversion cannot be unconstrained array type or an
unconstrained discriminated type.

(F.I.10.) Machine Code

- Machine-code insertions are not supported at this time.

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
prorities, run-until-blocked, etc.
AS: Preemptive scheduling.

6: What are the restrictions on pragma INLINE?
A6: Subprograms that require elaboration checks will not be inlined.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
AS: Machine code insertion is not supported at this time.

Q9: What object types are supported by pragma SHARED?
A9: Pragma SHARED is supported for 16 bit discrete and fixed point types and access
types.

Q10: What items are configurable for the runtime system?
A10. The items below are configurable for the runtime system.

Maximum number of tasks: Memory dependent
Default stack sizes: Yes
Default task priority: Yes
Optional numenc coprocessor: Yes
Semaphore operations: Yes
Exception trace: Under control of the debugger
Fast interrupt entry: Yes
Terminal I/0: Output only

Additional items:

- Heap size.

-123-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MC68000

package SYSTEM is

type Name is (Motorola_68K);

SystemName : constant Name := Motorola_68K;

Storage Unit : constant := 8;
MemorySize : constant := 2 ** 31 - 1;

Min _Int : constant := -(2 ** 31);
MaxInt : constant := +(2 ** 31) - 1;

Max Digits : constant := 15;
MaxMantissa : constant := 31;
Fine Delta : constant := 2.0 ** (-31);
Tick-: constant := 1.OE-03;

subtype Priority is Integer range 1 .. 254;

type Address is private;

AddressZero : constant Address;

function "+" (Left : Address; Right : Integer) return Address;

function "+" (Left : Address; Right : Address) return Integer;

function "-" (Left : Address; Right : Address) return Integer;

function "-" (Left : Address; Right : Integer) return Address;

function "<" (Left, Right : Address) return Boolean;

function "<=" (Left, Right : Address) return Boolean;

function ">" (Left, Right : Address) return Boolean;

function "<=" (Left, Right : Address) return Boolean;

function ToAddress (X : Integer) return Address;

function ToInteger (X : Address) return Integer;

private

end System;

-124-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the MC68020

package STANDARD is

type *Universal_Integer* is ...
type *UniversalReal* is ...
type *Universal-Fixed* is ...
type Boolean is (False, True);
type Integer is range -2_147_483_648 .. 2_147_483_647;
type ShortShortInteger is range -128 .. 127;
type Short-Integer is range -32_768 .. 32_767;
type Float is digits 6

range -3.40282346638529E+38 .. 3.40282346638529E+38;
type LongFloat is digits 15

range -1.79769313486231E+308 .. 1.79769313486231E+308;
type Duration is delta 6.10351562500000E-05

range -1.70141183460469E+38 .. 1.70141183460469E+38;
subtype Natural is Integer range 0 .. 2_147_483_647;
subtype Positive is Integer range 1 .. 2_147_483_647;

type String is array (Positive range <>) of Character;
Pragma Pack (String);
Package Ascii is ...

ConstraintError : exception;
NumericError : exception;
Storage-Error : exception;
TaskingError : exception;
Program-Error : exception;

type Character is ...

end Standard;

-125-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Sofrech, Inc. VAX-11/780 and 8086, Intel iAPX 8086
Compiler version 2.0 VAX 11/785 80186, Intel iAPX 80186

(under VAX/VMS 4.5) 80286, Intel iAPX 80286
(real mode)
80286, Intel iAPX 80286
(protected mode)
80386, Intel iAPX 80386
compatibility mode)
All bare machines)

DEGREE OF CONFIGURABILITY

I. Linker Capability:

- Individual subprogram extraction from packages only. The linker process is done in
two steps. To prepare an object module, link and export are needed. There is a
ELIMINATE option of the exporter. If used, not all the overhead would appear in
the downloaded module. Actual amounts would depend upon the features of the
application code.

II. Customization of the Runtime:

- Modifying-Replacing the source to selective runtime routines provided with the
purchase of the compiler (i.e. Device Drivers)

III. Documentation provided to help user configure runtime:

- Runtime Support Library Guide

IV. Services to customize the runtime:

- Provided by SofTech
- Cost: Charges are negotiated for each case, depending on the complexity of the
customization.

V. Cost of runtime source code:

- $50,000

VI. Source of Information: Vendor input.

-126-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Sofrech PIWG results for 8086/8087. Clock: 8MHz, 2 wait-states. PIWG test suite 1988.

PIWG Test Description Micro -

Name seconds

Dhrystone "Dhrystone" benchmark. 2092.0
Whetstone "Whetstone" benchmark. 103*

C000001 Task creation/terminate, task type declared in package. 7259.5
C000002 Task creation/terminate, task type declared in procedure. 7302.2
C003 Task creation/terminate, task type declared in block. 7257.1

D300001 Dynamic array, use and deallocation. 777.6
D000002 Dynamic array elaboration and initialization. 65554.2
D000003 Dynamic record allocation and deallocation. 833.3

E000001 Raise and handle an exception locally. 15.8
E000002 Raise and handle an exception in a package. 4917.6
E000004 Raise and handle an exception nested 4 deep in procedures. 9215.1

F000001 Set a BOOLEAN flag using a logical equation. 11.5
F000002 Set a BOOLEAN flag using an "if' test. 11.2

LOOOO01 Simple "for" loop. 11.6
L000002 Simple "while" loop. 11.5
L000003 Simple "exit" loop. 11.5

P000001 Procedure call and return inlineable), no parameters. 20.7
P000002 Procedure call and return not inlineable), no parameters. 33.5
P000003 Procedure call and return compiled separately). 21.1
P000004 Procedure call and return Pragma INLINE used). 0.1
P000005 Procedure call and return one parameter, in INTEGER). 26.3
P000006 Procedure call and return one parameter, out INTEGER). 28.5
P000007 Procedure call and return one parameter, in out INTEGER). 29.0
P000010 Procedure call and return ten parameters, in INTEGER. 67.1
P000011 Procedure call and return twenty parameters, in INTEGER). 111.5
P000012 Procedure call and return ten parameters, in recordtype). 124.5
P000013 Procedure call and return twenty parameters, in record.type). 227.4

TOOOO01 Minimum rendezvous, entry call and return. 3807.4
T000002 Task entry call and return (one task, one entry). 3765.4
T000003 Task entry call and return (two tasks, one entry each). 3802.0
T000004 Task entry call and return (one task, two entries). 5589.6
T000005 Active entry and return (ten tasks, one entry each). 3758.4
T000006 Task entry call and return (one task, ten entries). 13984.6
T000007 Minimum rendezvous, entry call and return. 3210.3

WHETSTONE: units are in KWIPS not in microseconds.

-127-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Soffech PIWG results for 8086/8087. Clock : 8MHz, 2 wait-states (Tests were compiled
with FAST TASKING pragmas). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds

Dhrystone "Dhrystone" benchmark. 2092.0
Whetstone "Whetstone" benchmark. 103*

C000001 Task creation/terminate, task type declared in package. 7259.5
C000002 Task creation/terminate, task type declared in procedure. 7302.2
C000003 Task creation/terminate, task type declared in block. 7257.1

D000001 Dynamic array, use and deallocation 777.6
D000002 Dynamic array elaboration and initialization. 65554.2
D000003 Dynamic record allocation and deallocation. 833.3

E000001, Raise and handle an exception locally. 15.8
E000002 Raise and handle an exception in a package. 4917.6
E000004 Raise and handle an exception nested four deep. 9215.1

F000001 Set a BOOLEAN flag using a logical equation. 11.5
F000002 Set a BOOLEAN flag using an "if' test. 11.2

L000001 Simple "for" loop. 11.6
L000002 Simple "while" loop. 11.5
L000003 Simple "exit" loop. 11.5

P00001 Procedure call and return inlineable), no parameters. 20.7
P000002 Procedure call and return not inlineable), no parameters. 33.5
P000003 Procedure call and return compiled separately). 21.1
P000004 Procedure call and return Pragma INLINE used). 0.1
P000005 Procedure call and return one parameter, in INTEGER). 26.3
P000006 Procedure call and return one parameter, out INTEGER). 28.5
P000007 Procedure call and return one parameter, in out INTEGER). 29.0
P000010 Procedure call and return ten parameters, in INTEGER). 67.1
P000011 Procedure call and return twenty parameters, in INTEGER). 111.5
P000012 Procedure call and return ten parameters, in record-type). 124.5
P000013 Procedure call and return twenty parameters, in record-type). 227.4

T000001 Minimum rendezvous, entry call and return. 96.1
T000002 Task entry call and return (one task, one entry). 94.6
T000003 Task entry call and return (two tasks, one entry each). 130.3
T000004 Task entry call and return (one task, two entries). , 130.3
T000005 Active entry and return (ten tasks, one entry each). 85.8
T000006 Task entry call and return (one task, ten entries). 85.8

• WHETSTONE : units are in KWIPS not in microseconds.

-128-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Sofrech PIWG results for 80186/8087. Clock: 8MHz, 2 wait-states. PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds

Dhrystone "Dhrystone" benchmark. 1593.4
Whetstone "Whetstone" benchmark. 118"

C00O001 Task creation/terminate, task type declared in package. 6408.0
C000002 Task creation/terminate, task type declared in procedure. 6443.8
C000003 Task creation/terminate, task type declared in block. 6409.9

D000001 Dynamic array, use and deallocation. 629.3
D000002 Dynamic array elaboration and initialization. 52302.9
D000003 Dynamic record allocation and deallocation. 669.7

E000001 Raise and handle an exception locally. 14.2
E0002O. Raise and handle an exception in a package. 3908.1
E000004 Raise and handle an exception nested four deep. 7367.6

F000001 Set a BOOLEAN flag using a logical equation. 10.4
F000002 Set a BOOLEAN flag using an "if" test. 9.6

LOOOOO1 Simple "for" loop. 8.4
L000002 Simple "while" loop. 7.4
L000003 Simple "exit" loop. 7.4
P0(0001 Procedure call and return (inlineable), no parameters. 15.4
P000002 Procedure call and return not inlineable), no parameters. 27.1

P000003 Procedure call and return compiled separately). 15.4
P000004 Procedure call and return Pragma INLINE used). 0.1
P000005 Procedure call and return one parameter, in INTEGER). 18.0
P000006 Procedure call and return one parameter, out INTEGER). 21.6
P000007 Procedure call and return one parameter, in out INTEGER). 22.2
P000010 Procedure call and return ten parameters, in INTEGER). 47.5
P000011 Procedure call and return twenty parameters, in INTEGER). 77.9
P000012 Procedure call and return ten parameters, in record-type). 97.3
P000013 Procedure call and return twenty parameters, in recorcLtype). 178.9

TOOOO01 Minimum rendezvous, entry call and return. 3241.6
T000002 Task entry call and return (one task, one entry). 3241.4
T000003 Task entry call and return (two tasks, one entry each). 3274.5
T000004 Task entry call and return (one task, two entries). 4738.0
T000005 Active entry and return (ten tasks, one entry each). 3244.6
T000006 Task entry call and return (one task, ten entries). 11543.5
T000007 Minimum rendezvous, entry call and return (one task, one entry). 2716.1

S WHETSTONE: units are in KWIPS not in microseconds.

-129-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Sofrech PIWG results for 80186/8087. Clock : 8MHz, 2 wait-states.(Tests were compiled
with FAST TASKING pragmas). PIWG test suite 1988.

PIWG Test Description Micro -

Name seconds

Dhrystone "Dhrystone" benchmark. 1593.4
Whetstone "Whetstone" benchmark. 118"

C000001 Task creation/terminate, task type declared in package. 6408.0
C000002 Task creation/terminate, task type declared in procedure. 6443.8
C000003 Task creation/terminate, task type declared in block. 6409.9

D000001 Dynamic array, use and deallocation. 629.3
D000002 Dynamic array elaboration and initialization. 52302.9
D000003 Dynamic record allocation and deallocation. 669.7

E000001 Raise and handle an exception locally. 14.2
E000002 Raise and handle an exception in a package. 3908.1
E000004 Raise and handle an exception nested four deep. 7367.6

F000001 Set a BOOLEAN flag using a logical equation. 10.4
F000002 Set a BOOLEAN flag using an "if' test. 9.6

LOOOO Simple "for" loop. 8.4
L000002 Simple "while" loop. 7.4
L000003 Simple "exit" loop. 7.4

P000001 Procedure call and return inlineable), no parameters. 15.4
P000002 Procedure call and return not inlineable), no parameters. 27.1
F000003 Piocedure call and return compiled separately). 15.4
P000004 Procedure call and return Pragma INLINE used). 0.1
P000005 Procedure call and return one parameter, in INTEGER). 18.0
P000006 Procedure call and return one parameter, out INTEGER). 21.6
P000007 Procedure call and return one parameter, in out INTEGER). 22.2
P000010 Procedure call and return ten parameters, in INTEGER). 47.5
P000011 Procedure call and return twenty parameters, in INTEGER). 77.9
P000012 Procedure call and return ten parameters, in record.type). 97.3
P000013 Procedure call and return twenty parameters, in recorcLtype). 178.9

TOOOO01 Minimum rendezvous, entry call and return. 87.2
T000002 Task entry call and return (one task, one entry). 86.5
T000003 Task entry call and return (two tasks, one entry each). 116.2
T00004 Task eiary call and return (one task, two entries). 115.4
T000005 Active entry and return (ten tasks, one entry each). 78.9
T000006 Task entry call and return (one task, ten entries). 77.9

'WHETSTONE: units are in KWIPS not in microseconds.

-130-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Sofech PIWG results for 80286P/80287. Clock : 10MHz, 0 wait-states. PIWG test suite
1988.

PIWG Test Description Micro -
Name seconds

Dhrystone "Dhrystone" benchmark. 602.3
Whetstone "Whetstone" benchmark. 183*

COOOO1 Task creation/terminate, task type declared in package. 2675.5
C000002 Task creation/terminate, task type declared in procedure. 2674.9
C000003 Task creation/terminate, task type declared in block. 2656.6

D000001 Dynamic array, use and deallocation. 380.7
D0(0002 Dynamic array elaboration and initialization. 16019.3
D000003 Dynamic record allocation and deallocation. 398.5

E000001 Raise and handle an exception locally. 5.3
E000002 Raise and handle an exception in a package. 1580.3
E000004 Raise and handle an exception nested 4 deep in procedures. 2940.1

F000001 Set a BOOLEAN flag using a logical equation. 3.0
F000002 Set a BOOLEAN flag using an "if' test. 3.1

L0O0001 Simple "for" loop. 2.8
L000002 Simple "while" loop. 2.3
L000003 Simple "exit" loop. 2.3

PO0001 Procedure call and return inlineable), no parameters. 7.9
P000002 Procedure call and return not inlineable), no parameters. 12.9
P000003 Procedure call and return compiled separately). 7.9
P000004 Procedure call and return Pragma ININE used). 0.0
P000005 Procedure call and return one parameter, in INTEGER). 9.1
P000006 Procedure call and return one parameter, out INTEGER). 9.8
P000007 Procedure call and return one parameter, in out INTEGER). 8.9
P00010 Procedure call and return ten parameters, in INTEGER). 16.6
P000011 Procedure call and return twenty parameters, in INTEGER). 24.1
P000012 Procedure call and return ten parameters, in record.type). 39.3
P000013 Procedure call and return twenty parameters, in record-type). 70.6

T000001 Minimum rendezvous, entry call and return. 1313.1
T000002 Task entry call and return (one task, one entry). 1312.9
T000003 Task entry call and return (two tasks, one entry each). 1323.9
T000004 Task enItry call and return (one task, two entries). 1834.6
T000005 Active entry and return (ten tabks, one entry each). 1309.7
T000006 Task entry call and return (one task, ten entries). 4155.1
T000007 Minimum rendezvous, entry call and return (one task, one entry). 1089.1

WHETSTONE: units are in KWIPS not in microseconds.

-131-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Sofrech PIWG results for 80286P/80287. Clock : 10MHz, 0 wait-states. (Tests were
compiled with FAST TASKING pragmas). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds

Dhrystone "Dhrystone" benchmark. 602.3
Whetstone "Whetstone" benchmark. 183*

COOOOO1 Task creation/terminate, task type declared in package. 2675.5
C000002 Task creation/terminate, task type declared in procedure. 2674.9
C000003 Task creation/terminate, task type declared in block. 2656.6

D000001 Dynamic array, use and deallocation. 380.7
D000 Dynamic array elaboration and initialization. 16019.3
D000003 Dynamic record allocation and deallocation. 398.5

E000001 - Raise and handle an exception locally. 5.3
E000002 Raise and handle an exception in a package. 1580.3
E000004 Raise and handle an exception nested four deep. 2940.1

F000001 Set a BOOLEAN flag using a logical equation. 3.0
F000002 Set a BOOLEAN flag using an "if' test. 3.1

L000001 Simole "for" loop. 2.8
LL00002 Simjale "while" loop. 2.3
L000003 Simple "exit" loop. 2.3

P000001 Procedure call and return inlineable), no parameters. 7.9
P000002 Procedure call and return not inlineable), no parameters. 12.9
P00003 Procedure call and return compiled separately). 7.9

P000004 Procedure call and return Pragma INLINE used). 0.0
P000005 Procedure call and return one parameter, in INTEGER). 9.1
P000006 Procedure call and return one parameter, out INTEGER). 9.8
P000007 Procedure call and return one parameter, in out INTEGER). 8.9
P000010 Procedure call and return ten parameters, in INTEGER). 16.6
P000011 Procedure call and return twenty parameters, in INTEGER). 24.1
P000012 Procedure call and return ten parameters, in RECORD). 39.3
P000013 Procedure call and return twenty parameters, in RECORD). 70.6

TOOOO01 Minimum rendezvous, entry call and return. 68.3
T000002 Task entry call and return (one task, one entry). 68.4
T000003 Task entry call and return (two tasks, one entry each). 80.1
T000004 Task entry call and return (one task, two entries). 80.1
T0O05 Active entry and return (ten tasks, one entry each). 65.4
T000006 Task entry call and return (one task, ten entries). 65.4

S WHETSTONE: units are in KWIPS not in microseconds.

-132-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Soffech PIWG results for 80286R/80287. Clock : 10MHz, 0 wait-states. PIWG test suite
1988.

PIWG Test Description Micro -

Name seconds

Dhrystone "Dhrystone" benchmark. 463.1
Whetstone "Whetstone" benchmark. 192*

C000001 Task creation/terminate, task type declared in package. 1884.7
C000002 Task creation/terminate, task type declared in procedure. 1891.7
C000003 Task creation/terminate, task type declared in block. 1878.7

D000001 Dynamic array, use and deallocation. 183.0
D000002 Dynamic array elaboration and initialization. 14303.6
D000003 Dynamic record allocation and deallocation. 194.4

E000001 o Raise and handle an exception locally. 3.0
E000002 Raise and handle an exception in a package. 1106.6
E000004 Raise and handle an exception nested four deep. 2087.3

F000001 Set a BOOLEAN flag using a logical equation. 2.0
F000002 Set a BOOLEAN flag using an "if" test. 3.1

L000001 Simple "for" loop. 2.9
L000002 Simple "while" loop. 2.3
L000003 Simple "exit" loop, 2.3

PO0001 Procedure call and return inlineable), no parameters. 5.4
P000002 Procedure call and return not inlineable), no parameters. 8.9
P000003 Procedure call and return compiled separately). 5.4
P000004 Procedure call and return Pragma INLINE used). 0.0
P000005 Procedure call and return one parameter, in INTEGER). 5.0
P000006 Procedure call and return one parameter, out INTEGER). 6.9
P000007 Procedure call and return one parameter, in out INTEGER). 6.1
P000010 Procedure call and return ten parameters, in INTEGER). 13.6
P000011 Procedure call and return twenty parameters, in INTEGER). 22.4
P000012 Procedure call and return ten parameters, in record-type). 24.8
P000013 Procedure call and return twenty parameters, in recordLtype). 44.3

TOOOO01 Minimum rendezvous, entry call and return. 991.6
T000002 Task entry call and return (one task, one entry). 991.1
T000003 Task entry call and return (two tasks, one entry each). 999.1
T000004 Task entry call and return (one task, two entries). 1417.8
T000005 Active entry and return (ten tasks, one entry each). 988.6
T000006 Task entry call and return (one task, ten entries). 3340.5
T000007 Minimum rendezvous, entry call and return. 831.9

" WHETSTONE: units are in KWIPS not in microseconds.

-133-

Guidelines to Select, Configure and Use an Ada Runtime Environment

SofTech PIWG results for 80286R/80287. Clock : 10MHz, 0 wait-states. (Tests were
compiled with FAST TASKING pragmas). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds

Dhrystone "Dhrystone" benchmark. 463.1
Whetstone "Whetstone" benchmark. 192*

C000001 Task creation/terminate, task type declared in package. 1884.7
C000002 Task creation/terminate, task type declared in procedure. 1891.7
C000003 Task creation/terminate, task type declared in block. 1878.7

D000001 Dynamic array, use and deallocation. 183.0
D000002 Dynamic array elaboration and initialization. 14303.6
D000003 Dynamic record allocation and deallocation. 194.4

E000001 - Raise and handle an exception locally. 3.0
E000002 Raise and handle an exception in a package. 1106.6
E000004 Raise and handle an exception nested four deep. 2087.3

F000001 Set a BOOLEAN flag using a logical equation. 2.0
F000002 Set a BOOLEAN flag using an "if' test. 3.1

L00 1 Simple "for" loop. 2.9
.L000002 Simple "while" loop. 2.3
L000003 Simple "exit" loop. 2.3
P000001 Procedure call and return (inineable), no parameters. 5.4
P000002 Procedure call and return not inineable), no parameters. 8.9

P000003 Procedure call and return compiled separately). 5.4
P000004 Procedure call and return Pragma INLINE used). 0.0
P000005 Procedure call and return one parameter, in INTEGER. 5.0
P000006 Procedure call and return one parameter, out INTEGER. 6.9
P000007 Procedure call and return one parameter, in out INTEGER). 6.1
P000010 Procedure call and return ten parameters, in INTEGER. 13.6
P000011 Procedure call and return twenty parameters, in INTEGER). 22.4
P000012 Procedure call and return ten parameters, in record-type). 24.8
P000013 Procedure call and return twenty parameters, in recordLtype). 44.3

T000001 Minimum rendezvous, entry call and return. 24.7
T000002 Task entry call and return (one task, one entry). 24.6
T000003 Task entry call and return (two tasks, one entry each). 33.4
T000004 Task entry call and return (one task, two entries). 33.0
T000005 Active entry and return (ten tasks, one entry each). 21.6
T000006 Task entry call and return (one task, ten entries). 21.3

•WHETSTONE: units are in KWIPS not in microseconds.

-134-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Sofrech PIWG results for 80386P/80287. Clock: 16MHz, 0 -3 wait-states. PIWG test suite
1988.

PIWG Test Description Micro -
Name seconds

Dluhystone "Dhrystone" benchmark. 426.8
Whetstone "Whetstone" benchmark. 531*

C000001 Task creation/terminate, task type declared in package. 1968.1
C000002 Task creation/terminate, task type declared in procedure. 1940.6
C000003 Task creation/terminate, task type declared in block. 1939.0

DO0001 Dynamic array, use and deallocation. 248.3
D000002 Dynamic array elaboration and initialization. 10022.6
D000003 Dynamic record allocation and deallocation. 260.4

EOOOO1 Raise and handle an exception locally. 2.9
E000002 Raise and handle an exception in a package. 1063.9
E000004 Raise and handle an exception nested four deep. 1972.6

F000001 Set a BOOLEAN flag using a logical equation. 1.5
F000002 Set a BOOLEAN flag using an "if' test. 1.6

L00001 Simple "for" loop. 1.7
L00002 Simple "while" loop. 1.6
L000003 Simple "exit" loop. 1.6

P000001 Procedure call and return inlineable), no parameters. 5.9
P000002 Procedure call and return not inlineable), no parameters. 9.1
P000003 Procedure call and return compiled separately). 5.9
P000004 Procedure call and return Pragma INLINE used). 0.0
P000005 Procedure call and return one parameter, in INTEGER). 6.4
P000006 Procedure call and return one parameter, out INTEGER). 6.5
P000007 Procedure call and return one parameter, in out INTEGER). 6.5
P000010 Procedure call and return ten parameters, in INTEGER). 11.4
P000011 Procedure call and return twenty parameters, in INTEGER). 17.9
P000012 Procedure call and return ten parameters, in record-type). 28.1
P000013 Procedure call and return twenty parameters, in record~type). 51.2

TOO0O1 Minimum rendezvous, entry call and return. 865.9
T000002 Task entry call and return (one task, one entry). 855.5
T000003 Task entry call and return (two tasks, one entry each). 874.3
T000004 Task entry call and return (one task, two entries). 1134.4
T000005 Active entry and return (ten tasks, one entry each). 865.2
T000006 Task entry call and return (one task, ten entries). 2336.1
T000007 Minimum rendezvous, entry call and return. 708.8

WHETSTONE: units are in KWIPS not in microseconds.

-135-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Sofrech PIWG results for 80386P/80287. Clock : 16MHz, 0 - 3 wait-states. (Tests were
compiled with FAST TASKING pragmas). PIWG test suite 1988.

PIWG Test Description Micro-
Name seconds

Dhrystone "Dhrystone" benchmark. 426.8
Whetstone "Whetstone" benchmark. 531*

C000001 Task creation/terminate, task type declared in package. 1968.1
C000002 Task creation/terminate, task type declared in procedure. 1940.6
C000003 Task creation/terminate, task type declared in block. 1939.0

DO00001 Dynamic array, use and deallocation. 248.3
D000002 Dynamic array elaboration and initialization. 10022.6
D000003 Dynamic record allocation and deallocation. 260.4

E000001 - Raise and handle an exception locally. 2.9
E000002 Raise and handle an exception in a package. 1063.9
E000004 Raise and handle an exception nested four deep. 1972.6

F000001 Set a BOOLEAN flag using a logical equation. 1.5
F000002 Set a BOOLEAN flag using an "if" test. 1.6

L000001 Simple "for" loop. 1.7
L000002 Simple "while" loop. 1.6
L000003 Simple "exit" loop. 1.6

P000001 Procedure call and return inlineable), no parameters. 5.9
P000002 Procedure call and return not inlineable), no parameters. 9.1
P000003 Procedure call and return compiled separately). 5.9
P000004 Procedure call and return Pragma INLINE used). 0.0
P000005 Procedure call and return one parameter, in INTEGER. 6.4
P000006 Procedure call and return one parameter, out INTEGER). 6.5
P000007 Procedure call and return one parameter, in out INTEGER). 6.5
P000010 Procedure call and return ten parameters, in INTEGER). 11.4
P000011 Procedure call and return twenty parameters, in INTEGER). 17.9
P000012 Procedure call and return ten parameters, in record-type). 28.1
P000013 Procedure call and return twenty parameters, in record-type). 51.2

TOOOO01 Minimum rendezvous, entry call and return. 51.2
T000002 Task entry call and return (one task, one entry). 52.3
T000003 Task entry call and return (two tasks, one entry each). 60.5
T000004 Task entry call and return (one task, two entries). 61.2
T000005 Active entry and return (ten tasks, one entry each). 49.5
T000006 Task entry call and return (one task, ten entries). 50.6

* WHETSTONE: units are in KWIPS not in microseconds.

-136-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Sofrech PIWG results for 80386R/80287. Clock: 16MHz, 0 -3 wait-states. PIWG test suite
1988.

PIWG Test Description Micro -
Name seconds

Dhrystone "Dhrystone" benchmark. 330.1
Whetstone "Whetstone" benchmark. 593"

C00O(1 Task creation/terminate, task type declared in package. 1421.0
C000002 Task creation/terminate, task type declared in procedure. 1405.5
C000003 Task creation/terminate, task type declared in block. 1402.7

D000001 Dynamic array, use and deallocation. 120.8
D000002 Dynamic array elaboration and initialization. 8503.4
D000003 Dynamic record allocation and deallocation. 127.8

E000001 Raise and handle an exception locally. 2.3
E000002 Raise and handle an exception in a package. 745.5
E000004 Raise and handle an exception nested four deep. 1401.2

F000001 Set a BOOLEAN flag using a logical equation. 1.5
F000002 Set a BOOLEAN flag using an "if" test. 1.6

L000001 Simple "for" loop. 1.7
L000002 Simple "while" loop. 1.6
LD00003 Simple "exit" loop. 1.6

P000001 Procedure call and return inlineable), no parameters. 4.2
P000002 Procedure call and return not inlineable), no parameters. 6.5
P000003 Procedure call and return compiled separately). 4.2
P000004 Procedure call and return Pragma INLINE used). 0.0
P000005 Procedure call and return one parameter, in INTEGER). 4.6
P000006 Procedure call and return one parameter, out INTEGER). 4.9
P000007 Procedure call and return one parameter, in out INTEGER). 4.9
P000010 Procedure call and return ten parameters, in INTEGER). 9.8
P000011 Procedure call and return twenty parameters, in INTEGER). 16.2
P000012 Procedure call and return ten parameters, in recordtype). 17.1
P000013 Procedure call and return twenty parameters, in recordLtype). 30.6

T000001 Minimum rendezvous, ent call and return. 671.5
T000002 Task entry call and return (one task, one entry). 662.0
T000003 Task entry call and return (two tasks, one entry each). 678.9
T000004 Task entry call and return (one task, two entries). 888.6
T000005 Active entry and return (ten tasks, one entry each). 674.0
T000006 Task entry call and return (one task, ten entries). 1888.1
T000007 Minimum rendezvous, entry call and return (one task, one entry). 554.9

WHETSTONE : units are in KWIPS not in microseconds.

-137-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Sofrech PIWG results for 80386R/80287. Clock : 16MHz, 0 - 3 wait-states. (Tests were
compiled with FAST TASKING pragmas). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds

Dhrystone "Dhrystone" benchmark. 330.1
Whetstone "Whetstone" benchmark. 593"

C000001 Task creation/terminate, task type declared in package. 1421.0
C000002 Task creation/terminate, task type declared in procedure. 1405.5
C000003 Task creation/terminate, task type declared in block. 1402.7

D000001 Dynamic array, use and deallocation. 120.8
D000002 Dynamic array elaboration and initialization. 8503.4
D000003 Dynamic record allocation and deallocation. 127.8

E000001 o Raise and handle an exception locally. 2.3
E000002 Raise and handle an exception in a package. 745.5
E000004 Raise and handle an exception nested four deep. 1401.2

F000001 Set a BOOLEAN flag using a losical equation. 1.5
F000002 Set a BOOLEAN flag using an "if' test. 1.6

LOOOO01 Simple "for" loop. 1.7
L000002 Simple "while" loop. 1.6
L000003 Simple "exit" loop. 1.6

P000001 Procedure call and return inlineable), no parameters. 4.2
P000002 Procedure call and return not inilneable), no parameters. 6.5
P000003 Procedure call and return compiled separately). 4.2
P000004 Procedure call and return Pragma INLINE used). 0.0
P000O05 Procedure call and return one parameter, in INTEGER). 4.6
P000006 Procedure call and return one parameter, out INTEGER). 4.9
P000007 Procedure call and return one parameter, in out INTEGER). 4.9
P000010 Procedure call and return ten parameters, in INTEGER). 9.8
P000011 Procedure call and return twenty parameters, in INTEGER). 16.2
P000012 Procedure call and return ten parameters, in record.type). 17.1
P000013 Procedure call and return twenty parameters, in recorcLtype). 30.6

TOOOO01 Minimum rendezvous, entry call and return. 20.1
T000002 Task entry call and return (one task, one entry). 20.4
T000003 Task entry call and return (two tasks, one entry each). 27.2
T000004 Task entry call and return (one task, two entries). 27.1
T000005 Active entry and return (ten tasks, one entry each). 18.5
T000006 Task entry call and return (one task, ten entries). 18.6

* WHETSTONE: units are in KWIPS not in microseconds.

-138-

Guidelines to Select, Configure and Use an Ada Runtime Environment

SoFTech, Inc.
Hosts VAX/VMS

Targetj IAPX 9084. 90184. 80M86R. 80286P
, 80386

Vorsomw 2.0

in

8000

7500

1. 7000

650O

6000

5500

5000

4500

4000 .*.

3500

30003 .0
tu

25000.

00

41 4 4
J

4T)

* a
U >

0409

Sun of ALL cosponents - 83730 bytes

7rr '-.-- re far the maxiuAuq overhead

(Reoer to Degree of Conflgurabdlty / Linker capabiL ity on previous page)

U Comdata was descbed by the vendor as the c oiibned

read/write area far all of the Ads libraries.

-139-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Appendix F Notes
The following excerpts are taken from the Ada Compiler Validation Summary Report for
SofTech Ada86 Version 1.34. [29]

Representation Clause Restrictions

Address Clauses

Address clauses are supported for the following items:

1. Scalar or composite objects with the following restrictions:

(a) The object must not be nested within a subprogram or task directly or
indirectly.
(b) The size of the object must be determinable at the time of compilation.

2. Subprograms with the following restrictions:

(a) The subprogram can not be a library subprogram (LRM requirement).
b) Any subprogram declared within a subprogram having an address clause

will be placed in relocatable sections.

3. Entries - An address clause may specify a hardware interrupt with which the entry
is to be associated.

Length Clause

T'STORAGESIZE for task type T specifies the number of bytes to be allocated for
the runtime stack of each task object of type T.

Enumeration Representation Clause

In the absence of a representation specification for an enumeration type T, the
internal representation of T'FIRST is 0. The default SIZE for a stand-alone object of
enumeration type T will be the smallest of the values 8, 16, or 32, such that the
internal representation of T'FIRST and T'LAST both fall within the range:

-2**(TSIZE - 1) .. 2**(T'SIZE - 1) - 1.

Length specifications of the form:

for T'SIZE use N;

and/or enumeration representations of the form:

for T use aggregate

Are permitted for N in 2..32, provided the representations and the SIZE
conform to the relationship specified above, or else for N in 1..31, provided that

-140-

Guidelines to Select, Configure and Use an Ada Runtime Environment

the internal representation of T'FIRST > = 0 and the representation of
TLAST = 2**(T'SIZE)-I.

for components of enumeration types within packed composite objects, the
smaller of the default stand-alone SIZE and the SIZE from a length
specification is used.

In accordance with the rules of Ada, and the implementation of package
STANDARD, enumeration representation on types derived from the
predefined type BOOLEAN are not accepted, but length specifications are
accepted.

Record Representation Clause

A length specification of the form

for T'SIZE use N;

Will cause arrays and records to be packed, if required, to accommodate the
length specification.

The PACK pragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type representation
to be chosen such that storage space requirements are minimized at the
possible expense of data access time and code space.

A record type representation specification may be used to describe the
allocation of components in a record. Bits are numbered 0..7 from the right.
(Bit 8 starts at the right of the next higher-numbered byte).

The alignment clause of the form:

at mod N

can specify alignment of 1 (byte) or 2 (word).

-141-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the iAPX286 Operating in Real Address Mode

package SYSTEM is

type WORD is range O..16#FFFF#;
for WORD'SIZE use 16;

type BYTE is range 0..255;
for BYTE'SIZE use 8;

subtype REGISTER is SYSTEM.WORD;
subtype SEGMENT REGISTER is SYSTEM.REGISTER;
subtype OFFSET_REGISTER is SYSTEM.REGISTER;

type ADDRESS is
record,

SEGMENT: SYSTEM.SEGMENTREGISTER;
OFFSET : SYSTEM.OFFSETREGISTER;

end record;

for ADDRESS'SIZE use 32;

for ADDRESS use
record
OFFSET at 0 range 0..15;
SEGMENT at 2 range 0..15;

end record;

NULLADDRESS : constant SYSTEM.ADDRESS := (0,0);

subtype TO-ADDRESS is SYSTEM.REGISTER;

type ABSOLUTEADDRESS is range O..16#FFFF#;
for ABSOLUTEADDRESS'SIZE use 20;

type NAME is (VAX780_VMS, iAPX86, iAPX186, iAPX286R);

SYSTEMNAME : constant SYSTEM.NAME := (SYSTEM. iAPX286R);
--Intel 80286 in real address mode.

STORAGEUNIT : constant := 8;
MEMORYSIZE : constant := (2**20)-1;

MININT : constant := -(2**31);
MAXINT : constant := (2**31)-1;

MAXDIGITS : constant := 15;

-142-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the IAPX286 Operating in Real Address Mode (Continued)

MAX MANTISSA : constant := 31;

FINEDELTA : constant := 4.656_612_873_077_392_578_125E-10;

type INTERRUPTTYPENUMBER is range 0..255;

DIVIDE ERROR INTERRUPT : constant := 0;
SINGLESTEP INTERRUPT : constant := 1;
NON MASKABLE INTERRUPT : constant := 2;
OVERFLOW INTERRUPT : constant := 4;
RSLCLOCK_INTERRUPT : constant := 64;

-- for iAPX86, iAPX286R
-- for iAPX186, it is 18

DELAYEXPIRYINTERRUPT : constant := 8;
-- for iAPX186 only

NUMERIC PROCESSORINTERRUPT : constant := 16;
-- for jAPX286 only
-- for iAPX86 it is 71
-- for iAPX186 it is 15

DISPATCHCODEINTERRUPT : constant := 32;
CHECK STACK INTERRUPT : constant := 48;
ENTERSUBPROGRAM WITHOUT LPP INTERRUPT : constant := 49;
ENTERSUBPROGRAM_INTERRUPT : constant := 50;
PROGRAM ERROR INTERRUPT : constant := 53;
CONSTRAINT ERROR INTERRUPT : constant := 54;
NUMERIC ERROR INTERRUPT : constant := 55;
ALLOCATE OBJECT INTERRUPT : constant := 56;
BOUNDEXCEPTIONINTERRUPT : constant := 05
UNDEFINED OPCODEEXCEPTIONINTERRUPT : constant := 6;
PROCESSOREXTENSIONNOTAVAILABLEINTERRUPT : constant := 7;
ENTERINNOCUOUSCRITICALREGIONINTERRUPT : constant := 33;
LEAVEINNOCUOUS CRITICALREGIONINTERRUPT : constant := 34;

type ENTRYKIND is
(ORDINARYINTERRUPTENTRY, -- ordinary interrupt entry
PROMPT , - fast interrupt entry
SIMPLE_QUICK , - quick interrupt entry
NO NDPSIMPLE_QUICK , -- quick interrupt entry
SIGNALLING_QUICK , -- quick interrupt entry
NON MASKABLE , - non-maskable interrupt entry
NO_NDPNONMASKABLE , -- non-maskable interrupt entry);

TICK : constant := 6.510 415 666 666 666 666 667E-6;
-- for iAPX86 only

TICK : constant := 0.000 015; -- 15 microseconds
-- for iAPXI86 only

-143-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the iAPX286 Operating in Real Address Mode (Continued)

TICKSPERSECOND : constant :f 20163.93442_62209_52836_06557;
-- approximate
-- for iAPX286 only

type DIRECTIONTYPE is (AUTOINCREMENT, AUTODECREMENT);

type PARITYTYPE is (ODD, EVEN);

type FLAGSREGISTER is
record
NESTEDTASK : BOOLEAN := FALSE;

-- for iAPX286 only
IOPRIVILEGELEVEL : NATURAL range 0..3 := 0;

-- for iAPX286 only
OVERFLOW : BOOLEAN = FALSE;
DIRECTION : SYSTEM.DIRECTIONTYPE := SYSTEM.AUTOINCREMENT;
INTERRUPT : BOOLEAN = TRUE;
TRAP : BOOLEAN := FALSE;
SIGN : BOOLEAN := FALSE;
ZERO : BOOLEAN := TRUE;
AUXILIARY : BOOLEAN := FALSE;
PARITY : SYSTEM.PARITYTYPE := SYSTEM.EVEN;
CARRY : BOOLEAN := FALSE;

end record;
for FLAGS REGISTER use
record
NESTED TASK at 0 range 14..14; -- for iAPX286 only
10 PRIVILEGE LEVEL at 0 range 12..13; -- for iAPX286 only
OVERFLOW at 0 range 11..11; -- for iAPX286 only
DIRECTION at 0 range i0..10; -- for iAPX286 only
INTERRUPT at 0 range 9..9; -- for iAPX286 only
TRAP at 0 range 8..8; -- for iAPX286 only
SIGN at 0 range 7..7; -- for iAPX286 only
ZERO at 0 range 6..6; -- for iAPX286 only
AUXILIARY at 0 range 4..4; -- for iAPX286 only
PARITY at 0 range 2..2; -- for iAPX286 only
CARRY at 0 range 0..0; -- for iAPX286 only

end record;

-144-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the iAPX286 Operating in Real Address Mode (Continued)

NORMALIZEDFLAGSREGISTER : constant SYSTEM.FLAGSREGISTER :
(NESTEDTASK => FALSE, -- for iAPX286 only
10 PRIVILEGE-LEVEL => 0, -- for iAPX286 only
OVERFLOW => FALSE,
DIRECTION => SYSTEM.AUTOINCREMENT,
INTERRUPT => TRUE,
TRAP => FALSE,
SIGN -> FALSE,
ZERO => TRUE,
AUXILIARY => FALSE,
PARITY => SYSTEM.EVEN,
CARRY => FALSE);

subtype PRIORITY is INTEGER range 1.. 15;

UNRESOLVED REFERENCE : exception;
SYSTEMERROR : exception;

function EFFECTIVEADDRESS
(A : in SYSTEM.ADDRESS)

return SYSTEM.ABSOLUTEADDRESS;

function FAST EFFECTIVE ADDRESS
(A : in SYSTEM.ADDRESS)

return SYSTEM.ABSOLUTEADDRESS;

function TWOS COMPLEMENT OF
(W : in SYSTEM.WORD)

return SYSTEM.WORD;

procedure ADDTOADDRESS
ADDR : in out SYSTEM.ADDRESS;
OFFSET : in SYSTEM.OFFSETREGISTER);

procedure SUBTRACT FROM ADDRESS
ADDR : in out SYSTEM.ADDRESS;
OFFSET : in SYSTEM.OFFSETREGISTER);

function INTERRUPT TYPE NUMBER OF
(A : in SYSTEm.ADDRESS) -

return SYSTEM. INTERRUPTTYPENUMBER;

procedure GETADDRESS _FROM_ INTERRUPTTYPENUMBER
A : out SYSTEM.ADDRESS;
ITN : in SYSTEM. INTERRUPTTYPENUMBER);

-145-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the iAPX286 Operating in Real Address Mode (Continued)

function GREATERTHAN
(Al : in SYSTEM.ADDRESS;
A2 : in SYSTEM.ADDRESS

return BOOLEAN;

function MINUS
Al : in SYSTEM.ADDRESS;
A2 : in SYSTEM.ADDRESS

return LONGINTEGER;

function ">"
Al : in SYSTEM.ADDRESS;
A2 : in SYSTEM.ADDRESS

return BOOLEAN renames SYSTEM.GREATERTHAN;

function "-"
(Al : in SYSTEM.ADDRESS;
A2 : in SYSTEM.ADDRESS

return LONGINTEGER renames SYSTEM.MINUS;

procedure ADJUSTFORUPWARDGROWTH
(OLDADDRESS : in SYSTEM.ADDRESS ;
ADJUSTED ADDRESS : out SYSTEM.ADDRESS);

-- Transforms the given SYSTEM.ADDRESS into a representation
-- yielding the same effective address, but in which the
-- SEGMENT component is as large as possible.

procedure ADJUSTFORDOWNWARDGROWTH
(OLD ADDRESS : in SYSTEM.ADDRESS ;
ADJUSTED ADDRESS : out SYSTEM.ADDRESS);

-- Transforms the given SYSTEM.ADDRESS into a representation
-- yielding the same effective address, but in which the
-- OFFSET component is as large as possible.

procedure ELABSYSTEM;

end SYSTEM;

-146-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the iAPX286 Operating in Real Address Mode

The following Package STANDARD contains definitions in addition to those specified in
Annex C of the LRM.

package STANDARD is

for BOOLEAN'SIZE use 1; -- immediately following BOOLEAN
-- type declaration

type INTEGER is range -32_768 .. 32_767;
for INTEGER'SIZE use 16;
type LONGINTEGER is range -2147_483_648 .. 2_147_483_647;
type FLOAT is DIGITS 6 RANGE

-(2#1.111_1111_1111_1111_1111_1111_1#E+127)
(2#1.111_1111_1111_1111_1111_1111_I#E+127)

type LONGFLOAT is DIGITS 15 RANGE-2#1.111 1111 11111111 1111 1111 1111 1111 11111111
111111nlll1#E+1023 ..

2#1.111_1111_1111_1111_1111_11111111111111111111ii

1111_1111_11#E+1023

for CHARACTER'SIZE use 8;
type DURATION is DELTA 2.0 ** (-14) RANGE -131_072.0 .. 131_072.0

end STANDARD;

.147-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Systems Designers DEC VAX-11/7xx, 1750A, Ferranti
Software, Inc. VAX 8xxx, VAX Computer System
Compiler version 2B.00 Station, and 100A

MicroVAX series (bare machine)
(under VAX/VMS 4.5 Derived
or MicroVMS 4.5)

DEGREE OF CONFIGURABILITY

This information was not supplied by the vendor.

PIWG RESULTS

See following pages.

RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-148-

Guidelihes to Select, Configure and Use an Ada Runtime Environment

System Designers Software PIWG results for 1750A (Fairchild 9450). Clock 15MHz.
PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

COOOO1 Task creation/terminate, task type declared in package. 3150
C000002 Task creation/terminate, task type declared in procedure. 3549
C000003 Task creation/terminate, task type declared in block. 3574

D000001 Dynamic array, use and deallocation. 40
D000002 Dynamic array elaboration and initialization. 33399
D000003 Dynamic record allocation and deallocation. 4074
D000004 Dynamic record elaboration and initialization. 40600

E000001 Raise and handle an exception locally. 67
E000002 Raise and handle an exception in a package. 114
E000003 Raise and handle an exception nested 3 deep in procedures. 184

F00000i Set a BOOLEAN flag using a logical equation. 7
F000002 Set a BOOLEAN flag using an "if' test. 7

LoOOO01 Simple "for" loop. 7
L000002 Simple "while" loop. 9
L000003 Simple "exit" loop. 6

P000001 Procedure call and return inlineable), no parameters. 27
P000002 Procedure call and return not inlineable), no parameters. 30
P000003 Procedure call and return compiled separately). 27
P000004 Procedure call and return Pragma INLINE used). 27
P000005 Procedure call and return one parameter, in INTEGER). 30
P000006 Procedure call and return one parameter, out INTEGER). 35
P000007 Procedure call and return one parameter, in out INTEGER). 38
P000010 Procedure call and return ten parameters, in INTEGER). 52
P000011 Procedure call and return twenty parameters, in INTEGER). 75
P000012 Procedure call and return ten parameters, in recordtype). 72
P000013 Procedure call and return twenty parameters, in recordtype). 115

T000001 Minimum rendezvous, entry call and return. 687
T000002 Task entry cali and return (one task, one entry). 650
T000003 Task entry call and return (two tasks, one entry each). 681
T000004 Task entry call and return (one task, two entries). 1068
T000005 Active entry and return (ten tasks, one entry each). 655
T000006 Task entry call and return (one task, ten entries). 2730

-149-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Systems Designers DEC VAX 8600 68010, MC68010
Software, Inc. (under VMS 4.5) implemented on
Compiler version 2C.00 the MVME 117-3FP

board (bare machine)

DEGREE OF CONFIGURABILITY

This information was not supplied by the vendor.

PIWG RESULTS

See following pages.

RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-150-

Guidelines to Select, Configure and Use an Ada Runtime Environment

System Designers Software PIWG results for Motorola MC68010. Clock 10MHz, 1
wait-state. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

C000001 Task creation/terminate, task type declared in package. 4844
C000002 Task creation/terminate, task type declared in procedure. 7382
C000003 Task creation/terminate, task type declared in block. 8867

D000001 Dynamic array, use and deallocation. 18
D000002 Dyamic array elaboration and initialization. 32578
D000003 Dynamic record allocation and deallocation. 7570
D000004 Dynamic record elaboration and initialization. 47734

E000001 Raise and handle an exception locally. 48
E000002 Raise and handle an exception in a package. 78
E000003 Raise and handle an exception nested 3 deep in procedures. 119

F00000f Set a BOOLEAN flag using a logical equation. 6
F000002 Set a BOOLEAN flag using an "if' test. 7

L000001 Simple "for" loop. 8
L000002 Simple "while" loop. 9
L000003 Simple "exit" loop. 8

P000001 Procedure call and return inlineable), no parameters. 30
P000002 Procedure call and return not inlineable), no parameters. 34
P000003 Procedure call and return compiled separately). 32
P000004 Procedure call and return Pragma INLINE used). 32
P000005 Procedure call and return one parameter, in INTEGER). 36
P000006 Procedure call and return one parameter, out INTEGER). 39
P000007 Procedure call and return one parameter, in out INTEGER). 42
P000010 Procedure call and return ten parameters, in INTEGER). 61
P000011 Procedure call and return twenty parameters, in INTEGER). 90
P000012 Procedure call and return ten parameters, in record.type). 87
P000013 Procedure call and return twenty parameters, in record.type). 141

TOOOO01 Minimum rendezvous, entry call and return. 791
T00002 Task entry call and return (one task, one entry). 791
T000003 Task entry call and return (two tasks, one entry each). 815
T000004 Task entry call and return (one task, two entries). 1406
T000005 Active entry and return (ten tasks, one entry each). 777
T000006 Task entry call and return (one task, ten entries). 3469

-15 1-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the System Designers MC68010 Bare Machine Target

package SYSTEM is

type ADDRESS is private

type NAME is (MC68000, MC68010);

SYSTEM NAME : constant NAME := MC68010;
STORAGE UNIT : constant := 8;
MEMORY SIZE : constant := 1677721;
MININT : constant := -2147483648;
MAXINT : constant := 2147483647;
MAXDIGITS : constant := 6;
MAXMANTISSA : constant :- 31;
FINE DEITA : constant :- 2#1.OE-30;
TICK : constant :- 2#1.0#E-7;

subtype PRIORITY is INTEGER range 0..15;

type UNIVERSALINTEGER is range MININT..MAXINT;

subtype EXTERNALADDRESS is STRING;

subtype BYTE is INTEGER range -128..127;

type LONGWORD is array (0..3) of BYTE;

pragma PACK(LONGWORD);

function CONVERTADDRESS(ADDR : EXTERNALADDRESS)
return ADDRESS;

function CONVERT ADDRESS(ADDR : ADDRESS)
return EXTERNAL_ADDRESS;

function CONVERTADDRESS(ADDR : LONGWORD)
return ADDRESS;

function CONVERT ADDRESS(ADDR : ADDRESS)
return LONGWORD;

function "+" (ADDk : ADDRESS; OFFSET : UNIVERSALINTEGER)
return ADDRESS;

private
-- type ADDRESS is system-dependent

end SYSTEM;

-152-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the System Designers MC68010 Bare Machine Target

package STANDARD is

type BOOLEAN is (FALSE, TRUE);

type INTEGER is range
-2147483648..2147483647;

type FLOAT is digits 6 range
-16#FFFFFF#E32.. 16#0. FFFFFF#E32;

type CHARACTER is

for CHARACTER use

package ASCII is

end ASCII;

-- Predefined subtypes:

subtype NATURAL is INTEGER range 0..INTEGER'LAST;

subtype POSITIVE is INTEGER range 1..INTEGER'LAST;

-- Predefined string type:

type STRING is array (POSITIVE range <>) of CHARACTER;

type DURATION is delta 2#1.OE-7 range -16777216.0..16777215.0;

-- The predefined exceptions:

end STANDARD;

-153-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Systems Designers DEC VAX 8600 68020, MC68020,
Software, Inc. (under VMS 4.5) implemented on
Compiler version 2C.00 the MVME 133

board with a MC68881
floating point
co-processor
(bare machine)

Compiler version 2C.00 DEC VAX-11/7xx 68020, MC68020,
VAX 8xxxVAX implemented on
station, and the MVME 133
MicroVAX series board with a MC68881
(under VAX/VMS 4.5 floating point
or MicroVMS 4.5) co-processor

(bare machine)

Compiler version 3A.00 DEC VAX-I 1/7xx 68020, MC68020,
VAX 8xxx, VAX implemented on
station (under VMS 4.6), the MVME 133
MicroVAX series board with a MC68881
(under MicroVMS 4.5) floating point

co-processor
(bare machine)

DEGREE OF CONFIGURABILITY

The software supplied is configured for the standard hardw-are, but it is supplied in source
form to enable users to reconfigure it for their own target hardware.

The following is a list of the common target differences and what is affected:

Target Timer

A macro definition file defines symbols and macros used to control the timer device
of the SD standard MC68020 target. This file must be modified for targets using a
different timer or one located elsewhere.

Target I/O

A macro definition file is used to provide symbols and macros dependent upon the
location and type of I/O device used for the host/target link. As supplied, it is

-154-

Guidelines to Select, Configure and Use an Ada Runtime Environment

configured for the standard MC68020 target and may require modification for targets
using a different I/O device.

Target Initialization

A macro file is provided for certain target-dependent actions that may be required to
initialize the target following a "reset" or "power-up".

Context Switching

A macro file is provided which will allow the user the option of saving/not saving the
entire MC68020 register set and floating point coprocessor context when context
switching occurs as the result of an interrupt.

Interrupt Vectors

With the software as supplied, all unused interrupt vectors are initialized to pass
control to the handler UNEXPECTED.INTERRUPT, which reports the interrupt
and then raises PROGRAM-ERROR. The user can place interrupt vectors at a
specific location, but a particular module must be specifically located there when the
program is built. The user can also modify a module which handles unexpected
interrupts as required.

Unhandled Exceptions

A catchall handler is provided for exceptions that are propagated out of an Ada
program.

Deadlock

If the tasking system detects a deadlock situation, a module is called to output a
deadlock message. This routine should be changed to perform the required actions.

PIWG RESULTS

See next page.

RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-155-

Guidelines to Select, Configure and Use an Ada Runtime Environment

System Designers Software PIWG results for Motorola MC68020. Clock: 12.5MHz, zero
wait-states. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

CO0OOO1 Task creation/terminate, task type declared in package. 8089
C000002 Task creation/terminate, task type declared in procedure. 8125
C000003 Task creation/terminate, task type declared in block. 8125

D000001 Dynamic array, use and deallocation. 13
D000002 Dynamic array elaboration and initialization. 12500
D000003 Dynamic record allocation and deallocation. 1689
D000004 Dynamic record elaboration and initialization. 17734

E000001 Raise and handle an exception locally. 31
E000002 Raise and handle an exception in a package. 47
E000003 Raise and handle an exception nested 3 deep in procedures. 67

F000001 Set a BOOLEAN flag using a logical equation. 9
F000002 Set a BOOLEAN flag using an "if' test. 9

L000001 Simple "for" loop. 4
L000002 Simple "while" loop. 3
L000003 Simple "exit" loop. 4

P000001 Procedure call and return (inlineable), no parameters. 8.8
P000002 Procedure call and return not inlineable), no parameters. 10.9P000003 Procedure call and return compiled separately). 21.9
P000004 Procedure call and return Pragma INLINE used). 17.3
P000005 Procedure call and return one parameter, in INTEGER). 18.3
P000006 Procedure call and return one parameter, out INTEGER). 20.7
P000007 Procedure call and return one parameter, in out INTEGER). 25.9
P000010 Procedure call and return ten parameters, in INTEGER). 29.6
P000011 Procedure call and return twenty parameters, in INTEGER). 51.2
P000012 Procedure call and return ten parameters, in record.type). 30.5
P000013 Procedure call and return (twenty parameters, in recordtype). 56.2

T000001 Minimum rendezvous, entr call and return. 191
T000002 Task entry call and return (one task, one entry). 189
T000003 Task entry call and return (two tasks, one entry each). 202
T000004 Task entry call and return (one task, two entries). 317
T000005 Active entry and return (ten tasks, one entry each). 188
T000006 Task entry call and return (one task, ten entries). 539

-156-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Appendix F Notes

The following excerpts are from System Designers Ada-Plus VAX/VMS = > MC68020
compiler documentation. [12]

Restrictions on Representation Clauses

Length Clauses

Attribute SIZE

The value specified for SIZE must not be less than the minimum number of bits
required to represent all values in the range of the associated type or subtype.
Otherwise, a compiler restriction is reported.

Attribute SMALL

There are no restrictions for this attribute.

Attribute STORAGE-SIZE

For access types the limit is governed by the address range of the target
machine and the maximum value is determined by SYSTEM.ADDRESS'LAST.

For task types the limit is also SYSTEM.ADDRESS'LAST.

Record Representation Clauses

Alignment Clause

The staticsimple.expression used to align records onto storage unit
boundaries must deliver the values 0 (bit aligned), 1 (byte aligned), 2 (word
aligned) or 4 (long word aligned).

Component Clause

Non-scalar types must be aligned and sized correctly.

The component size defined by the static range must not be less than the
minimum number of bits required to hold every allowable value of the
component. For a component of non-scalar type, the size may not be larger
than that chosen by the compiler for the type.

Address Clauses

Address clauses are implemented as assignments of the address expressions to objects
of an appropriate access type.

An object being given an address is assumed to provide a means of accessing memory
external to the Ada program. An object declaration with an address clause is treated
by the compiler as an access object whose access type is the same as the type of the

-157-

Guidelines to Select, Configure and Use an Ada Runtime Environment

object declaration. This access object is initialized with the given address at the point
of elaboration of the corresponding address clause, for example:

X: INTEGER;

for X'ADDRESS use at CONVERTADDRESS("FFOO");

is equivalent to:

type X..P is access INTEGER;
X _XP;

i:= newATADDRESS(XJP, "FFOO");
- where function newATADDRESS claims no store but
- returns the address given.

Note: The expressions in an address clause for an object are interpreted as addresses
absolute addresses on the target. Address clauses for subprograms, packages and
tasks are not implemented.

It is the responsibility of some external agent to initialize the area at a given address.
The Ada program may fail unpredictably if the storage area is initialized prior to the
elaboration of the address clause. The access object can be used for reading from and
writing to the memory normally, but only after the elaboration of the address clause.

Address clauses can only be given for objects and task entries. Address clauses are
not supported for other entities.

Unchecked storage deallocation will not work for objects with address clauses.

Object Addresses

For objects with an address clause, a pointer is declared which points to the
object at the given address. There is a restriction however that the object
cannot be initialized either explicitly or implicitly (i.e. the object cannot be an
access type).

Subprogram, Package and Task Unit Addresses

Address clauses for subprograms, packages and task units are not supported by
this version of the compiler.

Entry Addresses

Address clauses for are supported; the address given is the address of an
interrupt vector.

-158-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Example:

task INTERRUPT-HANDLER is
entry DONE;
for DONE use at SYSTEM.CONVERTADDRESS ("7C");

end INTERRUPTJIANDLER;

Note that it is only possible to define an address clause for an entry of a single task.

Implementation-Generated Names

There are no implementation-generated names denoting implementation-dependent
components.

Interpretation of Expressions in Address Clauses

The expressions in an address clause are interpreted as absolute addresses on the target.
Address clauses for subprograms, packages and tasks are not implemented.

Unchecked Conversions

The implementation imposes the restriction on the use of the generic function
UNCHECKED-CONVERSION that the size of the target type must not be less than the
size of the source type.

-159-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the SD Ada - MC68020

package SYSTEM is

type ADDRESS is private;

type NAME is (MC68020);

SYSTEMNAME : constant NAME := MC68020;
STORAGEUNIT : constant := 8;
MEMORYSIZE : constant := 2**32;
MININT : constant := -(2**31);
MAXINT : constant := (2**31)-1;
MAX-DIGITS : constant := 15;
MAXMANTISSA : constant := 31;
FINEDELTA : constant := 2#1.OE-31;
TICK : constant := 2#1.0#E-7;

subtype PRIORITY is INTEGER range 0 .. 126;
type UNIVERSAL INTEGER is range MININT .. MAXINT;
subtype EXTERNALADDRESS is STRING;

function CONVERTADDRESS (ADDR : EXTERNALADDRESS)
return ADDRESS;

function CONVERTADDRESS (ADDR : ADDRESS)
return EXTERNALADDRESS;

function "+" (ADDR : ADDRESS;
OFFSET UNIVERSALINTEGER)

return ADDRESS;

private

-- Implementation-dependent type ADDRESS

end SYSTEM;

-160-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the MC68020

package STANDARD is

type BOOLEAN is (FALSE, TRUE);

type SHORTINTEGER is range
-128 .. 127;

type INTEGER is range
-32_768 .. 32_767;

type LONG INTEGER is range
-2_147_483_648 .. 2_147_483_647;

type FLQAT is digits 6 range
-16#0.FFFFFF#e32 .. 16#0.FFFFFF#E32;

type LONGFLOAT is digits 15 range
- 16#0.FFFFFFFFFFFFFFF#E44 ..

16# 0. FFFFFFFFFFFFFFF#E44;

type DURATION IS DELTA 2#1.0#E-7 range
- 16_777_216.0 .. 16_777_215.0;

end STANDARD;

-161-Li_

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Tartan Laboratories Inc. VAX-11/750 1750A, Fairchild F9450
Compiler version V9 (under VMS 4.1) 1750A, Mikros MKS1750/SO

1750A, Unisys S1636-
(MIL-STD-1750A)
(all bare machines)

DEGREE OF CONFIGURABILITY

I. Linker Capability:

- Components are linked selectively and are only included if required.

II. Customization of the Runtime:

- By the use of pragmas
- By the use Compiler Switches
- Modifying-Replacing the source to selective runtime routines provided with the
purchase of the compiler (i.e. Device Drivers)
- By modifying the source to the entire runtime (after purchasing it)

Storage Layout - The main memory of a 1750A computer running an Ada program is
divided into four regions: static code and data (low memory), a stack for the main
program, a stack for interrupt handlers (high memory), and all remaining free
storage. The exact layout of the static area is determined by the linker control file.

User-Defined Actions - This is a collection of small procedures that are invoked by
the runtime when unusual conditions arise. It consists of the following:

System Idle
Program Termination
Abnormal Termination Diagnostics
Lowest Level Output
Text I/O Routines
Simple I/O Routines

Interrupts - The Ada runtime handles the floating-point overflow, fixed-point
overflow, floating-point underftow, and timer B interrupts of the MIL-STD- 1750A.
The remaining interrupts are available for application use. There are several ways in
which handling of a particular interrupt may be added to the runtime:

- An assembly code handler may be used that transparently services the
interrupt and returns to the point of interruption.

-162-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- A handler may be added to the Ada runtime. Such a handler, following a
standard template, can share the runtime interrupt stack and invoke runtime
task scheduling and interrupt services. The body for such a handler may be
written in Ada.
-A task entry may be connected to an interrupt.

Interrupt Vectors - There is a file which statically initialized the interrupt vectors.
Users may add their own vector initialization to this file.

Transparent Interrupt Handlers - Interrupts which occur very frequently and require
rapid service may be serviced by transparent interrupt handlers. Such a handler is
divorced from the Ada runtime data structures. The handler is written in assembly
code. Runtime tasking and interrupt services may not be called.

Standard Interrupt Handlers - A less restrictive form of interrupt handler may be
constructed using the template code provided. Standard handlers share the runtime's
interrupt stack and have access to runtime tasking and interrupt services. The body of
a standard interrupt handler may be written in Ada as a normal procedure. The
following restrictions should be observed:

- No Ada tasking operations should be done.
- Access types should not be declared nor allocations done. Doing so would
cause invocation of storage manager functions with the potential for lock
conflicts.
- Up-level addressing of nonstatic objects cannot be done. Interrupt service
should be done by outer level routines.

Direct Connection of Task Entries - A task entry may be directly connected to some
hardware interrupts by use of an address clause. The direct connection of an entry to
a hardware interrupt requires the alteration of the appropriate interrupt vector by the
runtime when the task is created.

The following excerpts are from Tartan's User Manual for the Runtime Client Package.
[27]

Tartan provides a Client package which is a "sideways" interface to the Ada runtime's
tasking mechanism. The Client package allows the Ada programmer to access the tasking
data structures and operations that are used to implement the Ada language requirements.
The access is directly into the runtime support, therefore providing considerably greater
power and generality than is available from the ordinary language operations. It also places
greater responsibility upon the user to insure that these operations are used correctly.

In general, the following capabilities are provided by the Client package:

-It allows the user to examine and modify the control block associated with each task,
or to associate additional user-defined data struckires with a given task.
- It allows the user to define nested global critical sections within which all context
switching is disabled.
- It allows the user to suspend, resume, delay, abort, or force exceptions into arbitrary
tasks.

-163-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Use of these capabilities in combination allows the user to implement a variety of executive
control functions in a multiple task application.

Runtime Tasking Data Structures (which the user has access to):

- Task Control Block. This is a data structure that is created when the corresponding
task is elaborated.
- Major States of a Task - Not Used, Await Dependents Termination, Caller Await
Rendezvous, Caller In Rendezvous, Child Activating, Delayed, Executing, Finished,
I/O Wait, Not Started, Waiting To Accept.
- TCB Extension. This field may be used to store whatever scalar or pointer
information the particular application wishes.
- Priorities of the Task. - static and dynamic priority fields
- Parent TCB. This field contains the TCB of the task on which this task is
dependent.
- Exception ID. This field contains the exception code for an exception that is to be
raised in a currently non-executing task.
- Execution Context.

Critical Sections

A critical section is a sequence of code in which context switches (such as task switching or
interrupts) must be prohibited due to the nature of the operations being performed.
Usually, this is done to prohibit corruption of some data structure by "simultaneous" access
by multiple tasks. The beginning of a critical section is indicated by a call to the procedure
EnterCriticaLSection; the end of the critical section is indicated by a call to the procedure
LeaveCriticaLSection.
Critical sections may be nested. The runtime software has the notion of a critical section
level global to all executing tasks on a single processor.

Tasking Interactions

The Client package supplies a number of procedures that allow the user to affect the
scheduling of tasks.

Scheduling Policy

The runtime contains a replaceable "scheduling" module. The default is a
preemptive, priority-based algorithm that uses order of arrival to break ties. Variants
of this module may use other criteria such as round-robin, fairness, or cyclic
time-slicing.

Context Switch

The context switch function performs the actual swap of processor state. In essence,
it implements the decision of the scheduling policy module.

Taldng Control Procedures and Functions

The following are individual procedures related to tasking control:

-164-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Reschedule. This procedure causes the scheduler to reexamine the set of runnable
tasks and dispatch one based on the scheduling policy currently in effect. Usually the
task with the highest priority is dispatched.

The current task will be treated like any other runnable task by the scheduler unless
the task has been suspended by procedure Suspend. If and when the current task
resumes execution, control returns to the task immediately after the call to
Reschedule.

- Suspend. This procedure causes the task T to be removed from the set of runnable
tasks. The effect of Suspend is undone by a call to Resume. Calling Suspend does
not cause a context switch; the current task continues to execute until such time as a
reschedule is done explicitly or implicitly.

- Suspend and Reschedule. This procedure suspends the task T and can cause a
context switch to occur.

- Suspend Current Task and Reschedule. This procedure suspends the current task

and causes a context switch to occur.

- Suspend Current Task. This procedure suspends the current task.

Execution of the current task continues until a context switch occurs, which will
happen if Reschedule is called but may happen asynchronously if an interrupt occurs.
Therefore if this procedure is used in preference to SuspendMe-andReschedule, it
should probably be called only within a critical section.

- Resume and Reschedule. This procedure cancels the effect of a previous Suspend
on task T; that is, makes task T runnable. In addition, the scheduler makes a new
selection of a runnable task, a selection in which T will participate. If task T has
hiher priority than the current task, and if the scheduler is implementing a
priority-driven policy, the current task is preempted.

- Resume. This procedure cancels the effect of a previous Suspend on task T; that is,
it makes task T runnable.

Unlike procedure Resume-and.Reschedule, procedure Resume does not cause a
context switch and therefore the current task will continue to run until the scheduler
regains control via a call to Reschedule or through the receipt of an external
interrupt. If this procedure is called in preference to Resume-andReschedule, it
should either be called from within a critical section or the caller should know that
this task will not be preempted (e.g., because it has a higher priority than any other
task).

- Resume after Delay. This procedure cancels the effect of Suspend on task T, if any,
and places it on the delay queue as if a delay statement had been executed by the
task. No context switch is made in conjunction with this procedure unless task T is
the current task.

It is possible that task T is the current task, in which case the effect is exactly as if a
delay statement had been executed.

-165-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Set Priority. This procedure alters the priority of the specified task. This interface is
procedural because a scheduler policy decision must be made based upon the new
priorities. However, no context switch is performed. In the absence of interrupts,
return will always be to the calling task.

- Set Priority and Reschedule. This procedure acts like SetPriority except that a
context switch may occur after T's priority is changed.

- Abort Task. This procedure aborts task T as if an Ada abort statement had been
executed on it.

- Set Exception. This procedure posts an exception in the indicated task. Any
previously posted exception is superseded. The exception will be raised when the task
reaches a synchronization point, that is, the next time it is dispatched.

- Identify Current Task. This function returns the TCB (task control block) of the
current task.

- Entry Caller for a Task. This function returns the TCB for the task engaged in a
rendezvous with the current task. It should be called only from within an accept body.
If nested rendezvous are in progress, the task corresponding to the innermost
rendezvous is returned.

- Runnable. This function returns TRUE if the task T can be executed immediatel,
that is, if it is in the scheduler's "ready queue". A suspended task is not runnable. To
avoid a possible race condition, call this function only from within a critical section;
otherwise the status of task T could change unpredictably.

- Suspended. This function returns TRUE if task T has been suspended. To avoid a
race condition, call this function only from within a critical section.

The following excerpts are from Tartan's User Manual for the Expanded Memory Package.
[281

The following modules may be customized to a particular application.

User-Defined Actions

This is a collection of small procedures that are invoked by the runtime when unusual
conditions arise.

- System Idle
- Program Termination
- Abnormal Termination Diagnostics
- Lowest Level Output
- Text I/O Routines
- Simple I/O Routines

Interrupts

-166-

Guidelines to Select, Configure and Use an Ada Runtime Environment

There are several ways in which handling of a particular interrupt may be added to the
runtimes:

- An assembly code handler may be used that transparently services the interrupt and
returns to the point of interruption.
- A handler may be added to the Ada runtime. Such a handler, following a standard
template, can share the runtime interrupt stack and invoke runtime task scheduling and
interrupt services. The body for such a handler may be written in Ada.
- A task entry may be connected to an interrupt.

Interrupt Vectors

Files are used to statically initialize the interrupt vectors by the runtime. Users can
add their own vector initialization to this file.

Transparent Interrupt Handlers

Interrupts that occur very frequently and require rapid services may be serviced by
transparent interrupt handlers. Since such a handler is divorced from the Ada
runtime data structures, entry and exit code can be kept to a minimum. The handler
is written in assembly code in the usual manner except that it must obey the following
restrictions:

- During interrupt service, certain interrupts should be masked (i.e.
PREEMPTER.AASK in EXDEFS.ASM).
- Return from interrupt must be to the point of interruption.
- Runtime tasking, interrupt, and storage allocation services may not be called.

Standard Interrupt Handlers

A less restrictive form of interrupt handler may be constructed using the template
code. Standard handlers share the runtime's interrupt stack and have access to
runtime tasking and interrupt services.

The body of a standard interrupt handler may be written in Ada as a normal
procedure. Pragma UnkageName can be used to provide a tractable name for the
entry of the procedure. The compiled procedure is then called from the interrupt
handler stub. When Ada procedures are used in such a manner, the following
restrictions should be observed:

- No Ada tasking operations should be performed. The tasking control
operations in the package ARTClient may be used.
- Access types should not be declared nor allocations done. Doing so would
cause invocation of storage manager functions with the potential for lock
conflicts.
- Up-level addressing of nonstatic objects cannot be done. Interrupt service
should be done by outer-level routines.

Direct Connection of Task Entries

-167-

Guidelines to Select, Configure and Use an Ada Runtime Environment

A task entry may be directly connected to some hardware interrupts by use of an
address clause.

The direct connection of an entry to a hardware interrupt requires the alteration of
the appropriate interrupt vector by the runtimes when the task is created.

Software Interrupts

The user may cause an interrupt entry call to occur to an associated task entry by use
of the DoInterrupt runtime routine.

III. Documentation provided to help user configure runtime:

- TADA (Tartan Ada Manual)
- Runtime Implementers Guide (with source code purchase)

IV. Services to customize the runtime:

- Provided by Tartan
- Cost: To be negotiated, approximately $100.00/Hour.

V. Cost of rnntime source code:

- $50,000

- Expanded memory option: Between $3,000.00 - $10,000.00 Depending on host.

VI. Source of Information: Vendor input and compiler manuals.

-168-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Tartan Laboratories Inc. PIWG results for 1750A, Fairchild.
Clock: 16MHz, zero wait-states. PIWG test suite 1988.

PIWG Test Description Micro -

Name seconds

A000091 Dhrystone benchmarks. 662.0
A000093 Whetstone benchmarks. 482*

COO0001 Task creation/terminate, task type declared in package. 1106.5
C000002 Task creation/terminate, task type declared in procedure. 1106.5
C000003 Task creation/terminate, task type declared in block. 1091.8

D000001 Dynamic array, use and deallocation. 14.0
D000002 Dynamic array elaboration and initialization. 7297.7
D000003 Dynamic record allocation and deallocation. 25.1
D000004 Dynamic record elaboration and initialization. 8534.8

E000001, Raise and handle an exception locally. 11.6
E000002 Raise and handle an exception in a package. 31.1
E000003 Raise and handle an exception nested 3 deep in procedures. 18.5
E000004 Raise and handle an exception nested four deep. 18.5
E000005 Raise and handle an exception in a rendezvous. 120.4

F000001 Set a BOOLEAN flag using a logical equation. 2.1
F000002 Set a BOOLEAN flag using an "if' test. 2.5

G000005 TEXTJO.Get an INTEGER from a local string. 340.3
G000006 TEXTJO.Get a FLOAT from a local string. 950.1

H000001 BOOLEAN operations on entire PACKed array. 23.2
H000002 BOOLEAN operations on entire array (not packed). 573.0
H000003 BOOLEAN operations on components of a PACKed array. 1178.5
H000004 BOOLEAN operations on components of a array (not packed). 295.1
H000005 Move INTEGER to INTEGER (Unchecked-Conversion). 0.0
H000006 Move array of 10 Floats to record (Unchecked-Conversion). 21.9
H000007 Store and extract bit fields, defined by representation clauses. 80.8

L000001 Simple "for" loop. 2.5
L000002 Simple "while" loop. 2.6
L000003 Simple "exit" loop. 2.5
L000004 Loop of 5 iterations with pragma OPTIMIZE (Time). 2.2
L000005 Loop of 5 iterations with pragma OPTIMIZE (Space). 2.2
P000001 Procedure call and return (inlineable), no parameters. 0.0
P00000 Procedure call and return not inlineable), no parameters. 4.0
P000003 Procedure call and return (compiled separately). 9.2

P000004 Procedure call and return (Pragma INLINE used). 9.2

-169-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Tartan Laboratories Inc. PIWG results for 1750A, Fairchild (Continued). Clock: 16MHz,
zero wait-states. PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds

P000005 Procedure call and return one parameter, in INTEGER). 10.7
P000006 Procedure call and return one parameter, out INTEGER). 11.5
P000007 Procedure call and return one parameter, in out INTEGER). 12.1
P000010 Procedure call and return ten parameters, in INTEGER). 22.0
P000011 Procedure call and return twenty parameters, in INTEGER). 36.0
P000012 Procedure call and return ten parameters, in record-type). 33.3
P000013 Procedure call and return twenty parameters, in record-type). 53.3

T000001 Minimum rendezvous, entry call and return. 150.5
T000002 Task entry call and return (one task, one entry). 149.2
T000003 Task entry call and return (two tasks, one entry each). 159.3
T000004 Task entry call ane return (one task, two entries). 371.8
T000005 Active entry and return (ten tasks, one entry each). 146.9
T000006 Task entry call and return (one task, ten entries). 1022.9
T000007 Minimum rendezvous, entry call and return 150.5
T000008 Parameter pass from producer task through buffer task to

consumer task 726.7

WHETSTONE : units are in KWIPS not in microseconds.

-170-

Guideline to Select, Configure, and Use an Ada Runtime Environent

Takrta~n Lab~koraitories Incorporated~
Host ; VAX-Un~x

Tar'get 1750A Mikr'os, Foirch;Lid, or~ Unisys

Version V9
(N

4000 44 C-

3500
>

-3000 0 aI....
w Ul U

U0

28000 L C

1500
(fQ)

1000ON0
soo in

+;+ ; + C +

EE E E E E _ 0 r
0) 0 0)) -H -+P a) U

Z zd d x C

>S -P C LA 'E 0 :3
L 0 (1 0 u5 U
O U) :3 0
E in L a1 >-
aW Q L Ou N

U a U0a) -Y
0 1- PX z d C)

U L C Li C L3 c

C

-Sum oF ALL Components = 12,692 bytes

-171-

Guidelines to Select, Configure and Use an Ada Runtin'e Environment

Appendix F Notes

The following excerpts are from User Manual for Tartan Ada VMX/1750A [11]

Restrictions on Representation Clauses

Length Clauses

A length clause to T'SIZE is permitted for an type or first subtype T for which
the size can be computed at compile time. A ength clause for a composite type
cannot be used to force a smaller size for components than established by the
default the mapping or by length clauses for the component types.

There are no restrictions on other forms of length clauses except the
restrictions specified in LRM 13.2. The size specified for T'STORAGESIZE
of an access type or task type T is assumed to include a small amount of hidden
administrative storage.

Enumeration Representation Clauses

All integer codes in the representation aggregate must be between
INTEGER'FIRST and INTEGER'LAST.

Record Representation Clauses

Record representation clauses are permitted only for record types all of whose
components have a size known at compile time.

Representation specifications may be specified for some components of a
record without supplying representation specifications for all components. The
compiler will freely allocate the unspecified components.

Address Clauses

When applied to an object, an address clause becomes a linker directive to
allocate the object at the given logical address. For any object not declared
immediately within top-level library package, the address clause is meaningless,
with the possible exception of objects declared inside a task, if the target
permits a task to run in a separate address space.

Address clauses applied to local packages are not supported by Tartan Ada.

Address clauses applied to subprograms and tasks are implemented according
to the LRM rules.

When applied to an entry, the specified value identifies an interrupt in a
manner customary for the target. Immediately after a task is created, a runtime
call is made for each of its entries having an address clause, establishing the
proper binding between the entry and the interrupt.

-172-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MIL-STD-1750a

package SYSTEM is

type ADDRESS is new integer;;

type NAME is (VAX, MILSTD_1750A, MC68000);

systemname : constant name := MILSTD_1750A;
storage unit : constant := 16;
memorysize : constant := 1000000;
min int : constant := -max int - 1;
max int : constant := 32767;
max digits : constant := 9;
max mantissa : constant := 31;
fine delta : constant := 241.OE-14;
tick - : constant := 0.0001;
subtype priority is integer range 10 .. 200;
defaultpriority : constant priority := priority'first;
runtimeerror : exception;

end SYSTEM;

-173-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

TeleSoft, Inc. MicroVAX II 1750A, MIL-STD-1750A
Compiler version 3.22 (under VMS, ECSPO RAID simulator

version 4.6) version 4.0 executing
on the host (bare machine)

DEGREE OF CONFIGURABILITY

I. Linker Capability:

This information was not supplied by the vendor.

II. Customization of the Runtime:

- By compiler switches
- By linker switches

III. Documentation provided to help user configure runtime:

-TeleGen2 VAX/1750A Users Guide

IV. Services to customize the runtime:

-TeleSoft has a custom products division geared toward assisting the customer,
customizing the runtime and/or compiler.

V. Cost of runtime source code:

-$50,000

VI. Source of Information: Vendor input, selected compiler documentation.

-174-

Guidelines to Select, Configure and Use an Ada Runtime Environment

TeleSOFT Inc. PIWG results for Fairchild 1750A. Clock: 15MHz, zero wait-states, (Tests
were compiled with OPTIMIZE pragma). PIWG test suite 1986.

PIWG Test Description Micro -
Name seconds

A000091 Dhrystone benchmarks. 1050.2
A000093 Whetstone benchmarks. 450*

C000001 Task creation/terminate, task type declared in package. 2961.1
C000002 Task creation/terminate, task type declared in procedure. 2965.7
C000003 Task creation/terminate, task type declared in block. 2930.9

D000001 Dynamic array, use and deallocation. 16.7
D000002 Dynamic array elaboration and initialization. 23576.7
D000003 Dynamic record allocation and deallocation. 313.5
D000004 Dynamic record elaboration and initialization. 24776.0

E000001 Raise and handle an exception locally. 9.1

L000001 Simple "for" loop. 5.6
L000002 Simple "while" loop. 5.5
L000003 Simple "exit" loop. 4.9
P000001 Procedure call and return inlineable), no parameters. 0.0
P000002 Procedure call and return not inlineable), no parameters. 35.8

P000003 Procedure call and return compiled separately). 34.7
P000004 Procedure call and return Pragma INLINE used). 0.0
P000005 Procedure call and return one parameter, in INTEGER). 34.7
P000006 Procedure call and return one parameter, out INTEGER). 35.4
P000007 Procedure call and return one parameter, in out INTEGER). 35.4
P000010 Procedure call and return ten parameters, in INTEGER). 37.7
P000011 Procedure call and return twenty parameters, in INTEGER). 54.1
P000012 Procedure call and return ten parameters, in record-type). 44.7
P000013 Procedure call and return twenty parameters, in recordLtype). 71.2

TOOOO01 Minimum rendezvous, entry call and return. 961.4
T000002 Task entry call and return (one task, one entry). 959.9
T000003 Task entry call and return (two tasks, one entry each). 978.9
T000004 Task entry call and return (one task, two entries). 1177.5
T000006 Task entry call and return (one task, ten entries). 1770.7
T000007 Minimum rendezvous, entry call and return. 617.9

'WHETSTONE : units are in KWIPS not in microseconds.

-175-

Guidelines to Select Configure and Use an Ada Runtime Environment

T&e~of t, Inc.
Host VAX - VMS

Target 1750A

Version TeleGen2 3.22 C
In

11000

'3000 Cu

~-2.500

2000

1500.. . .

1000 CU
10 01,

500 - C'

E E EE E E C:
0) 03) 0) 0) 0) 0))
x z: x C x: C

-Y

a a-. E 0 0 N
0 (A : 43 I-
E Vt L C1
03 Q) 0 0

M: U Q) u
U L C WU
E

C

-Sum of ALL Components = 16,000 bytes

*K Tasking inctudes : 1 Rendlezvous Management
2. Task Activation
3. Task Termination

-176-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

QI: What is the resolution of the clock used for delay statements?
Al: The 1750A uses 10KHz timer (Timer B).

Q2: How long, and for what reasons are interrupts disabled?
A2: Interrupts are disabled during runtime structure update.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: (1) Function mapped interrupts - All processing associated with handling the interrupt
occurs during the rendezvous (in the body of the accept statement) and no interactions with
other tasks occur during the rendezvous. (2) Simple rendezvous.

Q4: What are the restrictions for representation clauses?
A4: For the 1750A (the following are excerpts from TeleGen2 User Guide documentation
[25]):

(LRM 13.1) This release supports a limited use of pragma Pack.

(LRM 13.2) Telegen2 allows user specification of storage for a task activation using
the Storage-Size attribute in a length clause. The default stack size is 768 words.

(LRM 13.5) For address clauses applied to objects, a simple expression of type
Address is interpreted as a position within the linear address space of the 1750A.
Unchecked-Conversion to the private type System.Address must be used to specify
address constants.

(LRM 13.5.1) For interrupt entries, the address of a TeleSoft-defined interrupt
descriptor can be given. Address clauses for subprograms, packages, tasks, and literal
constants are not supported.

(LRM 13.6) Changes of representation are not supported for types with record
representation clauses.

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
A5: Event driven (interrupts included) and Run-until-blocked or pre-empted.

Q6: What are the restrictions on pragma INLINE?
A6: The following are excerpts from TeleGen2 User Guide documentation. [253
The optimizer supports inlining of calls to subprograms that the user identifies through
pragma INLNE. As specified by the Ada language reference manual, the pragma must be
placed in the same declarative region as the declaration of the subprogram to be inlined
and must follow the subprogram declaration. In the following example the package
DragCoef is placed after the declaration of the function:

-177-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package Drag._Calc is

type Plane-Type is (B707,B727,B747);

function DragCoef (Plane: Plane-Type) return float;
Pragma INLINE (Drag.Coef);

end Drag.Calc;

The inlining of subprograms is transitive. For example, if inlined subprogram A is called by
inlined subprogram B, and B is called by subprogram C, then optimization will result in A
being inlined in B and then B being inlined in C.

The one exception to the rule is that a subprogram will not be automatically inlined into a
subprogram that itself marked for inlining using pragma INLINE. Autoinlining is inhibited
to ensure that the user has full control over the rining process. This feature prevents any
significant and undesired overhead introduced by the automatic inlining of a called
subprogram. Any subprogram that is to be inlined into another inlined subprogram must be
exphcitly miarked with Pragma INLINE.

Inline expansion is the one type of optimization currently implemented for which a
time/space tradeoff is an issue. A subprogram that the user has marked for inline expansion
and that is called from more than one place can cause object code to be larger after
optimization than before, if the inlined subprogram has significant size. Subprograms
identified for inlining should be small enough so that expansion takes little if any additional
space than the call it replaces. Inline subprogram designations will be honored regardless of
the space the code uses. It is the users responsibility to evaluate potential tradeoffs.

The following conditions must be met for a subprogram to be inlined:

1. The subprogram must be designated in an INLINE pragma or be subject to automatic
inlininx.

2. The unit containing the subprogram to be inlined must be optimized.

3. The units that call the inlined subprogram must be optimized.

Conditions two and three indicate that both the called subprogram and the code that
calls it must be optimized for inlining to take place.

4. Full intermediate code forms of the unit containing the subprogram to be inlined must be
present in the Ada library.

The Optimizer works on the intermediate code forms of compiled units. The
compiler,/NOSQUEEZE qualifier must be used to ensure that these forms are
stored in the Ada library when compilation is complete.

5. A unit that contains the body of an inlined subprogram must be compiled before the
compilation of any units that call the inlined subprogram.

-178-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Inlining consists of inserting the code for the inlined subprogram into the calling
program. The code for the inlined subprogram must already exist for the insertion to
occur.

If any of these conditions are not met, inlining will not take place and a normal call to a
non-inlined copy of the subprogram will take place.

Inlining may create new unit dependencies. The user needs to anticipate the consequences
of inlming certain subprograms with a given configuration.

Due to the possibility that a caller has been compiled prior to compilation and optimization
of an inlined body, the optimizer will always create a callable body for a pragma INLINE
program that is externally visible. Generation of a callable body can be avoided by declaring
the subprogram where it is not externally visible (i.e. in the body of a package) or by
designating the unit a hidden unit of a collection that includes all of the subprogram's
callers.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: Yes.

Q9: What object types are supported by pragma SHARED?
A9: None.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

- Dynaimc Task Priority
- Timer Resolution
- Exception Trace
- Default Stack Sizes
- Fast Interrupt Entry
- Optional Numeric Co-processor

-179-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the TeleSoft 1750A Target

The current specification of package System is provided below. Note that the named
number Tick is not used by any component of the Ada compiler or runtime system.
Similarly, Memory-Size is not used.

package SYSTEM is

type Address is private;

NullAddress : constant Address;

type PhysicalAddress is private;

type SubprogramValue is private;

type Name is (TeleGen2);
SystemName : constant Name := TeleGen2;

Storage-Unit : constant := 16;
Memory_Size : constant := 65536;

MinInt : constant := - (2**31);
Max-Int : constant :=(2 ** 31) - 1;
Max_-Digits : constant := 6;
MaxMantissa : constant :=31;
Fine Delta : constant := 1.0 / (2 ** (Max_Mantissa - 1));
Tick-: constant := 0.0001;

subtype Priority is Integer range 0..15;

MaxObject Size : constant := MaxInt;
MaxRecordCount : constant := MaxInt;
Max-_TextIoCount : constant := MaxInt-1;
MaxTextIoField : constant := 1000;

private

type Address is Access Integer;
Null Address : constant Address := null;

type PhysicalAddress is range 16#0#..16#7FFFFFFF#;

type SubprogramValue is record
LogicalAddress : TargetLogicalAddress;
Address State : TargetAddressState;
Static Base : TargetLogicalAddress;

end record;

end SYSTEM;

-180-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

TeleSoft, Inc. DEC VAX family 68020, MC68020
Compiler version 3.22 (MicroVAX VAX station, implemented on a

VAX server, VAX 8xxx, Motorola MVME 133A-20
models) (under VMS board with a MC68881
4.5 and 4.6). floating-point coprocessor

(bare machine)

Compiler version 3.22 MicroVAX II 68020, MC68020
(under VMS 4.6) implemented on a

Motorola MVME 133A-20
board with a MC68881
floating-point coprocessor
(bare machine)

DEGREE OF CONFIGURABILITY

I. Linker Capability:

This information was not supplied by the vendor.

II. Customization of the Runtime:

- By compiler switches
- By linker switches

III. Documentation provided to help user configure runtime:

-TeleGen2 VAX/68K Users Guide

IV. Services to customize the runtime:

-TeleSoft has a custom products division geared toward assisting the customer,
customizing the runtime and/or compiler.

V. Cost of runtime source code:

-$50,000

VI. Source of Information: Vendor input, user input, selected compiler documentation.

-181-

Guidelines to Select, Configure and Use an Ada Runtime Environment

TeleSoft Inc. PIWG results for Motorola MC68020/68881. Clock: 20MHz, one wait-state,
cache enabled, global optimization used, no suppresses, 68020 code generation option
selected. PIWG test suite 1986.
PIWG Test Description Micro -
Name seconds

A000091 Dhrystone benchmarks. 320.0
A000092 Whetstone benchmarks*. 769*

C000001 Task creation/terminate, task type declared in package. 846.7
C000002 Task creation/terminate, task type declared in procedure. 860.3
C000003 Task creation/terminate, task type declared in block. 849.6

D000001 Dynamic array, use and deallocation. 10.5
D000002 Dynamic array elaboration and initialization. 5632.7
D000003 Dynamic record allocation and deallocation. 910.2
D000004 Dynamic record elaboration and initialization. 7890.5

E000001 , Raise and handle an exception locally. 16.6
E000002 Raise and handle an exception in a package. 64.2
E000004 Raise and handle an exception nested 4 deep in procedures. 424.3

LOOOO01 Simple "for" loop. 1.1
L000002 Simple "while" loop. 0.1
L000003 Simple "exit" loop. 0.0

P000001 Procedure call and return inlineable), no parameters. 3.8
P00000 Procedure call and return not inlineable), no parameters. 5.6
P000003 Procedure call and return compiled separately). 8.2
P000004 Procedure call and return Pragma INLINE used). 3.1
P000005 Procedure call and return one parameter, in INTEGER). 11.0
P000006 Procedure call and return one parameter, out INTEGER). 5.2
P000007 Procedure call and return one parameter, in out INTEGER). 4.0
P000010 Procedure call and return ten parameters, in INTEGER). 12.7
P000011 Procedure call and return twenty parameters, in INTEGER). 24.5
P000012 Procedure call and return ten parameters, in record-type). 16.8
P000013 Procedure call and return twenty parameters, in record-type). 23.9

TOOOO1 Minimum rendezvous, ent call and return. 279.3
T000002 Task entry call and return (one task, one entry). 281.3
T000003 Task entry call and return (two tasks, one entry each). 283.9
T000004 Task entry call and return (one task, two entries). 439.9
T000005 Active entry and return (ten tasks, one entry each). 277.7
T000006 Task entry call and return (one task, ten entries). 843.7
T000007 Minimum rendezvous, entry call and return. 187.5
* This version of the WHETSTONE uses manufacturers' math routines. WHETSTONE:
units are in KWIPS not in microseconds.

-182-

Guidelines to Select, Configure and Use an Ada Runtime Environment

TeeSof t, Inc,
Host VAX - VMS

Target , MVME 133 (68020)
Co

Version TeteGen2 3.22o3

20000 -4 I n

C~CN9000

3000 :1

'" 2500
U-)

- 2D 0.00..

1500

1000 /,

500 0.

43--
-P

E E E: E C
0) CD a 0) 0) CJ

0 S- I- U -
L 0 0. d 0
0 (A L3 17- F-

Q) Q) L
U 0)U :
0 -P x IN

U . C

C

- Sum of ALL Components = 34,667 bytes

X Tosking includes 1

1. Rendezvous Monagement
2. Task Activation
3. Task Terminaotion
4, Housekeeping (Includes unchecked conversion)

-183-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: For the MC68000 it is hardware dependent.

Q2: How long, and for what reasons are interrupts disabled?
A2: Interrupts are disabled during runtime structure update.

03: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: (1) Function mapped interrupts - All processing associated with handling the interrupt
occurs during the rendezvous (in the body of the accept statement) and no interactions with
other tasks occur during the rendezvous. (2) Simple rendezvous.

Q4: What are the restrictions for representation clauses?
A4: For the MC68000 (the following are excerpts from TeleGen2 User Guide [26]):

(LRM 13.1) Records that are packed using pragma PACK follow these conventions:
1. The allocated size of each component is always a power of two (1,2,4...).
2. Components of records may cross word boundaries,
3. Components that are composite types (arrays and records) are always allocated on
a System.StorageUnit (8-bit or word) boundary.

(LRM 13.2) Telegen2 allows user specification of storage for a task activation by use
of the 'STORAGE-SIZE attribute in a length clause. The default stack size is 5000
storage units (bytes). 'STORAGE-SIZE is not supported for collections.

(LRM 13.3) Enumeration representation clauses on BOOLEAN types are not
supported.

(LRM 13.4) Record representation clauses are supported, within the following
constraints :

1. Each component of the record must be specified with a component clause.
2. The alignment of the record is restricted to mod 2, word alignment.
3. The ordering of bits within a byte is right to left.
4. Components may cross word boundaries.
5. Any object of a discrete type of size larger than 8 bits requires a sign bit. In
the example below, the type Actually.llbits appears to be representable in
ten bits:

type Actually-l lbits is new Integer range 0..2* 10-1;

type Smallrec is record

IsiL0_Bits : Actuaolylbit;

end record;

for SmalLRec use record at mod 2;
Isit..10_Bits : at 0 range 0..9; -error! Invalid size.

end record;

-184-

Guidelines to Select, Configure and Use an Ada Runtimae Environment

Since Actually.lbits are used because of the sign bit, the component clause
in the example is illegal.

There are no implementation-dependent names to denote
implementation-dependent components.

(LRM 13.5) Address cluses for subprograms, packages, and tasks are not supported.
For address clauses applied to objects, a simple expression of type Address is
interpreted as a position within the linear address space of the MC680x0.
Unchecked-Conversion to the private type System.Address must be used to specify
address constants.

(LRM 13.5.1) For interrupt entries, the address of a TeleSoft-defined interrupt
descriptor can be given.

(LRM 13.6) Changes of representation are not supported for types with record
representation clauses.
(LAM 13.7) Pragmas System..Name, Storage-Unit, and Memory-Size are not

supported.

(LRM 13.7.2) 'Address is not supported for packages or labels.

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
AS: Event driven (interrupts included) and Run-until-blocked or pre-empted.

6: What are the restrictions on pragma INUNE?
A6: (The following are excerpts from TeleGen2 User Guide [26])

The optimizer supports inlining of calls to subprograms that the user identifies through
pragma INLINE. As specified by the Ada language reference manual, the pragma must be
placed in the same declarative region as the declaration of the subprogram to be inlined
and must follow the subprogram declaration. In the following example the package
Drag..Coef is placed after the declaration of the function:

Package Drag.Calc is

type Plane-Type is (B707,B727,B747);

function Drag.Coef (Plane: Plane-Type) return float;
Pragma INLINE (Drag..Coe);

end Drag..Calc;

The inlining of subprograms is transitive. For example, if inlined subprogram A is called by
inlined subprogram B, and B is called by subprogram C, then optimization will result in A
being inlined in B and then B being inlined in C.

The one exception to the rule is that a subprogram will not be automatically inlined into a
subprogram that itself marked for inlining using pragma INLINE. Autoinlining is inhibited

-185-

Guidelines to Select, Configure and Use an Ada Runtime Environment

to ensure that the user has full control over the inlining process. This feature prevents any
sigificant and undesired overhead introduced by the automatic inlining of a called
subprogram. Any subprogram that is to be inlined into another inlined subprogram must be
explicitly marked with Pragma INLINE.

Inline expansion is the one type of optimization currently implemented for which a
time/space tradeoff is an issue. A subprogram that the user has marked for inline expansion
and that is called from more than one place can cause object code to be larger after
optimization than before, if the inlined subprogram has significant size. Subprograms
identified for inlining should be small enough that expansion takes little if any additional
space than the call it replaces. Inline subprogram designations will be honored regardless of

space the code uses. It is the users responsibility to evaluate potential tradeoffs.

The following conditions must be met for a subprogram to be inlined:

1. The subprogram must be designated in an INLINE pragma or be subject to automatic
inlining.

2. The unit containing the subprogram to be inlined must be optimized.

3. The units that call the inlined subprogram must be optimized.

Conditions two and three indicate that both the called subprogram and the code that
calls it must be optimized for inlining to take place.

4. Full intermediate code forms of the unit containing the subprogram to be inlined must be
present in the Ada library.

The Optimizer works on the intermediate code forms of compiled units. The
compiler,/NOSQUEEZE qualifier must be used to ensure that these forms are
stored in the Ada library when compilation is complete.

5. A unit that contains the body of an inlined subprogram must be compiled before the
compilation of any units that call the inlined subprogram.

Inlining consists of inserting the code for the inlined subprogram into the calling
program. The code for the inhlined subprogram must already exist for the insertion to
occur.

If any of these conditions are not met, inlining will not take place and a normal call to a
non-inlined copy of the subprogram will take place.

Inlining may create new unit dependencies. The user needs to anticipate the consequences
of inlining certain subprograms with a given configuration.

Due to the possibility that a caller has been compiled prior to compilation and optimization
of an inlined body, the optimizer will always create a callable body for a pragma INLINE
program that is externally visible. Generation of a callable body can be avoided by declaring
the subprogram where it is not externally visible (i.e. in the body of a package) or by
designating the unit a hidden unit of a collection that includes all of the subprogram's
callers.

-186-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Q7: Is code "ROM'able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: Yes.

Q9: What object types are supported by pragma SHARED?
A9: None.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

- Dyna~ic Task Priority

- Timer Resolution
- Exception Trace
- Default Stack Sizes
- Fast Interrupt Entry
- Optional Numeric Co-processor

-187-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the TeleSoft Embedded MC68OX0 Targets

The current specification of package System is provided below. Note that the named
number Tick is not used by any component of the Ada compiler or runtime system.
Similarly, Memory-Size is not used.

package SYSTEM is

type Address is access integer;

type Name is (TeleGen2);

SystemName : constant Name := TeleGen2;

Storage-Unit : constant := 8;
Memory_Size : constant := (2**31) - 1;

-- System-Dependent Named Numbers:

Min Int : constant := - (2**31);
Max-_Int : constant := (2**31) - 1;
MaxDigits : constant := 15;
MaxMantissa : constant := 31;

Fine Delta : constant := 1.0 / (2 ** (MaxMantissa - 1));

Tick : constant := 10.OE-3;

-- Other System-Dependent Declarations:

subtype Priority is Integer range 0..63;

MaxObject Size : constant := MaxInt;
Max_RecordCount : constant := MaxInt;
MaxTextIoCount : constant := MaxInt - 1;
MaxTextIoField : constant := 1000;

-- Other TeleSoft Declarations:

private

type SubprogramValue is private;
RECORD

Proc addr : Address;
Staticlink : Address;
Globalframe : Address;

ENDRECORD;

end SYSTEM;

-188-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

TLD Systems Ltd. VAX-11 VMS 1750A, MIL-STD-1750A
Compiler version 1.3.2 (bare machine)

Compiler version 1.3.2 HP9000 - 350 1750A, MIL-STD-1750A
(bare machine)

Compiler version 1.3.2 DG AOS/VS 1750A, MIL-STD-1750A
(bare machine)

DEGREE OF CONFIGURABILITY

I. Linker Capability:

- Package bodies are loaded as needed, procedures and functions are always loaded.

II. Customization of the Runtime:

- By pragmas
- By compiler switches
- By linker switches
- By modifying the source to the entire runtime

III. Documentation provided to help user configure runtime:

- Interface Control Document

IV. Services to customize the runtime:

- Provided by TLD
- Cost: Charges ari negotiated for each case, depending on the complexity of the
customization.

V. Cost of runtime source code:

- The runtime source code is included in the price of the compiler.

VI. Source of Information: Vendor Input.

-189-

Guidelines to Select, Configure and Use an Ada Runtime Environment

TLD Systems Ltd. PIWG results for MDC281. Clock: 15MHz.

PIWG Test Description Micro -
Name seconds

A000091 Dhrystone benchmarks. 1429.9
A000092 Whetstone benchmarks. 255"
A000093 Whetstone benchmarks. 262*

C000001 Task creation/terminate, task type declared in package. 4848.6
C000002 Task creation/terminate, task type declared in procedure. 4832.2
C000003 Task creation/terminate, task type declared in block. 4811.4

D000001 Dynamic array, use and deallocation. 370.2
D000002 Dynamic array elaboration and initialization. 19279.8
D000003 Dynamic record allocation and deallocation. 383.8

E000001 Raise and handle an exception locally. 37.9
E000002 'Raise and handle an exception in a package. 64.1
E000003 Raise and handle an exception nested 3 deep in procedures. 18.4
E000004 Raise and handle an exception nested 4 deep in procedures. 12.7
E000005 Raise and handle an exception in a rendezvous. 198.4

F000001 Set a BOOLEAN flag using a logical equation. 6.6
F000002 Set a BOOLEAN flag using an "lfw test. 6.5

LOOOO01 Simple "for" loop. 8.5
L000002 Simple "while" loop. 8.5
L000003 Simple "exit" loop. 7.8
L000004 Loop of 5 iterations with pragma OPTIMIZE (Time). 7.5
L000005 Loop of 5 iterations with pragma OPTIMIZE (Space). 7.6

P000001 Procedure call and return inlineable), no parameters. 12.5
P000002 Procedure call and return not inlineable), no parameters. 78.9
P000003 Procedure call and return compiled separately). 12.5
P000004 Procedure call and return Pragma INLINE used). 12.5
P000005 Procedure call and return one parameter, in INTEGER). 12.5
P000006 Procedure call and return one parameter, out INTEGER). 20.4
P000007 Procedure call and return one parameter, in out INTEGER). 18.1
P000010 Procedure call and return ten parameters, in INTEGER. 41.4
P000011 Procedure call and return twenty parameters, in INTEGER). 93.1
P000012 Procedure call and return ten parameters, in recordtype). 48.4
P000013 Procedure call and return twenty parameters, in record..type). 104.8

T000001 Minimum rendezvous, entry call and return. 1078.3
T000002 Task entry call and return (one task, one entry). 1078.1
T000003 Task entry call and return (two tasks, one entry each). 1125.6

-190-

Guidelines to Select, Configure and Use an Ada Runtime Environment

TLD Systems Ltd. PIWG results for MDC281. Clock: 15MHz.

PIWG Test Description Micro -
Name seconds

T000004 Task entry call and return (one task, two entries). 1856.8
T000005 Active entry and return (ten tasks, one entry each). 1070.3
T000006 Task entry call and return (one task, ten entries). 3816.7
T000007 Minimum rendezvous, entry call and return. 461.5
T000008 Parameter pass from producer task through buffer task to 3541.7

SWHETSTONE : units are in KWIPS not in microseconds.

-191-

Guidelines to Select, Configure and Use an Ada Runtime Environmnent

TLP Systems Ltd.
Hosti VAX - 11/VMS, HP9000-350, DG AOS/VS
Targeti MIL-STD-1750AC) C
Ver-sionj 1.3.2CD)

8000 C) C

7500

7000 CD

6500

6000

5500

5000,

w 4500

4000

S3500

3000

2500

2000

U-)
1500 CU /Z

1000 .

500 CD 4z _0

0) CD+ .) Q

C 0)
+; I-' +; Ifl +; C 4;C

E E3-E C
CD 01 0) 0) 0 -

d d C
0 o .(IU0 : L I r 0

I- L CL

C

-Sum Of ALL Components = 28,250 bytes

.192-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

QI: What is the resolution of the clock used for delay statements?
Al: 100 microseconds.

Q2: How long, and for what reasons are interrupts disabled?
A2: Maximum of 200 Microseconds to 1.)update queues, pointers, and other runtime
system global variables and 2.) handle interrupts and change context.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: Parameterless, bodyless rendezvous' are optimized. (See T000001)

Q4: What are the restrictions for representation clauses?
A4: 'SMALL is not supported. Nested representation specifications are not supported.

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
A5: Preemptive priority based scheduling with optional time slicing.

Q6: What are the restrictions on pragma INLINE?
A6: Pragma INLINE is not implemented.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: Yes.

Q9: What object types are supported by pragina SHARED?
A9: Scalars types are not supported by pragma SHARED.

Q10: What items are configurable for the runtime system?
A1O: The items below are configurable for the runtime system.

- Maximum number of tasks (No limit)
- Dynamic task priority
- Task time slice default
- Default stack sizes
- Default task priority

-Terminal I/3

-193-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MIL-STD-1750A

package SYSTEM is

-- Note: The order of the elements in the OPERATING SYSTEMS and NAME
-- enumerations cannot be changed--they must correspond with the values
-- in the CONFIG.CFG file.

type operating-systems is (unix, netos, vms, osx, msdos, bare);

type NAME is (none, nsl6000, vax, af1750, z8002, z8001, gould, pdpll,
m68000, pe3200, caps, amdahl, i8086, i80286, i80386, z80000,
ns32000, ibmsl, m68020, nebula, name-x, hp);

systemname : constant name := name'target;
osname I : constant operatingsystems := operatingsystems'system;

subtype priority is integer range l..16#3FEE#; -- one is default priority
subtype interruptpriority is integer range 16#3FFO#..16#3FFF#;

pragma putline('>', '>', '>', ' ', systemname,1 ' /', 1 ", os name, J. "1 <11 "<10 1<1);

type address is range 0..65535;
for address'size use 16;

for unsigned is range 0..65535;

for unsigned size use 16;

-- Language defined constants

storage-unit : constant := 16;
memory_size : constant := 65535;
min int : constant := -2**31;
max-int : constant := 2**31-1;
maxdigits : constant := 9; -- 11 digits internally
max mantissa : constant := 31;
fine delta : constant := 2.0**(-31);
tick- : constant := 1.0/10 000.0; -- Clock ticks are 100 usecs.
rtc tps : constant := 10_000; -- # of counts in one second

-- for systems rtc
min delay : constant := rtctps * tick;-- Minimum value of Ada delay
address_0 : constant address :- 0; -- Zero address

end SYSTEM;

-194-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the MIL-STD-1750A

pragma runtime;
package STANDARD is

Package ascii is

end ascii;

subtype Natural is Integer range 0 .. Integer'Last;
subtype Positive is Integer range 1 .. Integer'Last;

type String is array (Positive range <>) of Character;
-- Pragma Pack (String);

-- 32 bits with 12 bits for fractional part.

type duration is delta 2.0**(-14) range -86_400.0..86_400.0;

constraint-error : exception;
numericerror : exception;
storage error : exception;
taskingerror : exception;

end Standard;

Notes: Float is 6 digits, Long-Float is 9 digits.
Integer is 16 bits, LongInteger is 32 bits.

-195-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Verdix Corp. MicroVAX II 1750A, Fairchild 9450
Compiler version 5.5 (under VMS under Tektronics

Version 4.7) emulation (bare machine)

DEGREE OF CONFIGURABILITY
I. Linker Capability:

- Any part of a library unit being required loads entire unit.
- Available 6/89: Individual subprograms and/or data objects may be extracted from
packages only.

II. Customization of the Runtime:

- by pragmas
- by compiler switches
- by linker switches
- by modifying/replacing the source to selective runtime routines provided by the
Verdix with purchase of the compiler (i.e. device drivers, etc).
- by modifying the source of the entire runtime (after purchasing it)

III. Documentation provided to help user configure runtime:

VADS User Manual, Configuring VADS <versions number>

IV. Services to customize the runtime:

Verdix supplies support for runtime configuration as part of level 1 and level 2
support contracts. The support is usually by telephone, but for large customers or
where the problems may be a fault of Verdix, Verdix may come on site.

V. Cost of runtime source code:

$25,000 to $50,000

VI. Source of Information: Vendor input.

PIWG RESULTS

This information was not supplied by the vendor.

-196-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix Corporation
Host ' VAX - VMS

Target a 1750A

Version , Verdix 5S5

25000

19000

9500

9000

85003

8000

7500

7000

'6500

'hii

-o=6000 %0

*5500

5000

4500 - o

4000

3500g

3000_y

25u,

2000

1500o*o** vendor

1000-1
3W in an In

V

f- 4-% 4b4

U X (4

ada

-Sum of ALL Components = 89,000 8CL0W bytes6
*4,000 bytes + 5-lox of program for tables.

on Text-10 = 25,000 bytes
RS232 =LOGO bytes
ThrectjO0 - 93,000 bytes
Sequential-10O 9,00 bytes

mum Component was suppled by vendor.

-197-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: For V5.7 1750A 'Timer B' is used.

Q2: How long, and for what reasons are interrupts disabled?
A2: Not available.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: Pragma PASSIVE - Rendezvous is implemented as procedure call protected by semaphores

Pragma PASSIVE(Interrupt) - Rendezvous implemented as direct hardware interrupt
handler protected by interrupt masking hardware.

Simple (trivial) accepts are implemented as "resumes".
Other specific optimzations are also detected.

04: What are the restrictions for representation clauses?
A4: Array element sizes are packed only to power-of-two bits, below 16 bits.

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
AS: Time slicing, Run-until-blocked,dynamic priorities (Only after next addition to pending
queue), or prionty-inheritence. Time slicing may be applied to individual tasks. Queues are
FIFO by priority.

Q6: What are the restrictions on pragma INLINE?
A6: None. However if nobody is available then a call will be generated. A pragma
INLINEONLY will suppress generation of an out-of-line body, but will force availability of
the inline body.

Q7: Is code "ROM"able?
A7: Yes. It is not yet position-independent however, and so must be relinked to be moved.

Q8: Are machine code inserts supported?
AS: Verdix has complete assembler-level machine code for all cross and self- hosted VADS
products. In addition, tools such as the optimizer and debugger can operate on machine
code (Pragma IMPLICITCODE(OFF)) will inhibit optimization and prologue/epilogue
Ada support, for 'What you see is what you get" machine code.

Q9: What object types are supported by pragma SHARED?
A9: Pragma SHARED inhibits the representation of variables in registers or other
non-write-through memory. Only scalars and other register-sized values are affected.

QI0: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

Maximum number of tasks: Memory dependent
Task time slice default: Max clock value
Timer resolution: Min clock value or about 10 microseconds
Default stack sizes: Memory dependent
Default task priority: 0-99

-198-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Optional numeric coprocessor: unknown
Dynamic task priority: 0-99
Semaphore operations: Yes
Exception trace: Unhandled interrupts
Fast interrupt entry: Yes
Terminal IfO: RS232
Runtime system variations: Yes

Additional items:

- Mailboxes
- Del.y-Until
- U-r-suppliable memory management
- Timed Semaphores
- Suspend/Resume
- Dynamic task priority/Time-slice
- User-supplied task/program creation/switch/destroy "Call Outs"
- Multi-program support
- Multi-processor support (Remote semaphores, Suspend/Resume, Signal, Memory
mapping, Memory allocation, Cataloging)
- Emulator support
- Target debug monitor support

-199-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Package SYSTEM for the MIL-STD.1750A

package SYSTEM is

type NAME is (m1750a);

SYSTEMNAME : constant NAME := m1750a ;
EXTENDEDMEMORY : BOOLEAN := FALSE;
STORAGEUNIT : constant := 16;
MEMORYSIZE : constant := 2097152;

-- System-Dependent Named Numbers

MIN INT : constant := -2 147 483 648;
MAX INT : constant := 2 147 483 647;
MAX DIGITS : constant := 9;
MAXMANTISSA : constant := 31;
FINEDELTA : constant := 2.0**(-31);
TICK : constant := 0.01;

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 1..99;

MAXRECSIZE : integer := 1*1024;
type SHORT ADDRESS is private;
type ADDRESS is private;

NOADDR : constant ADDRESS;
NOSHORT ADDR : constant SHORTADDRESS;
subtype SEGMENT is INTEGER range 0..INTEGER'LAST;
function PHYSICAL ADDRESS (I : INTEGER) return ADDRESS;
function ADDRGT TA, B: ADDRESS) return BOOLEAN;
function ADDR_LT (A, B: ADDRESS) return BOOLEAN;
function ADDRGE (A, B: ADDRESS) return BOOLEAN;
function ADDR_LE (A, B: ADDRESS) return BOOLEAN;
function ADDRDIFF (A, B: ADDRESS) return INTEGER;
function INCR_ADDR (A: ADDRESS; INCR: INTEGER) return ADDRESS;
function DECRADDR (A: ADDRESS; DECR: INTEGER) return ADDRESS;

function ">" (A, B: ADDRESS) return BOOLEAN renames ADDRGT;
function "<" (A, B: ADDRESS) return BOOLEAN renames ADDR LT;
function ">-" (A, B: ADDRESS) return BOOLEAN renames ADDR_GE;
function "<=" (A, B: ADDRESS) return BOOLEAN renames ADDRLE;
function "-" (A, B: ADDRESS) return INTEGER renames ADDRDIFF;
function "+" (A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCRADDR;
function "" (A: ADDRESS; DECR: INTEGER) return ADDRESS renames DECRADDR;

-200-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Package SYSTEM for the MIL-STD-1750A (Continued)

function OFFSETOF(A : ADDRESS) return SHORTADDRESS;
function SEGMENTOF(A : ADDRESS) return SEGMENT;
function SEGMENTOF return SEGMENT;
function MAKEADDRESS(A : SHORTADDRESS; SEG : SEGMENT) return ADDRESS;

function PHYSICALADDRESS(I : LONGINTEGER) return SHORTADDRESS;
function ADDRGT(A, B : SHORTADDRESS) return BOOLEAN;
function ADDRLT(A, B : SHORTADDRESS) return BOOLEAN;
function ADDRGE(A, B : SHORTADDRESS) return BOOLEAN;
function ADDRLE(A, B : SHORTADDRESS) return BOOLEAN;
function ADDR DIFF(A, B : SHORT ADDRESS) return INTEGER;
function INCR ADDR(A : SHORT_ADDRESS; INCR : INTEGER) return SHORTADDRESS;
function decr-ADDR(A : SHORTADDRESS; DECR : INTEGER) return SHORTADDRESS;

function ">" (A, B: SHORT ADDRESS) return BOOLEAN renames ADDRGT;
function "<" (A, B: SHORT ADDRESS) return BOOLEAN renames ADDRLT;
function ">=" (A, B: SHORT_ADDRESS) return BOOLEAN renames ADDR_GE;
function "<=" (A, B: SHORTADDRESS) return BOOLEAN renames ADDRLE;
function "-" (A, B: SHORTADDRESS) return INTEGER renames ADDRDIFF;
function #+" (A: SHORTADDRESS; INCR: INTEGER) return SHORTADDRESS

renames INCR_ADDR;
function " _" (A: SHORTADDRESS; DECR: INTEGER) return SHORTADDRESS

renames DECR_ADDR;

pragma inline (ADDRGT);
pragma inline (ADDR LT);
pragma inline (ADDR GE);
pragma inline (ADDRLE);
pragma inline (ADDR DIFF) ;
pragma inline (INCRADDR);
pragma inline (DECRADDR);
pragma inline (OFFSET OF);
pragma inline (SEGMENT OF);
pragma inline (MAKEADDRESS);
pragma inline (PHYSICALADDRESS);

private

type ADDRESS is new integer;
type SHORTADDRESS is new address;
for ADDRESS'size use 16;
for SHORTADDRESS'size use 16;

end SYSTEM;

-201-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Verdix Corp. MicroVAX II 80386, iSBC 386/20P
Compiler version 5.5 (under MicroVMS, Intel using file-

Version 4.4) server support from the
Host (bare machine)

Compiler version 5.5 MicroVAX II 80386, iSBC 386/20P
(under VMS, Intel using file-server
Version 4.7) support from the Host

(bare machine)

Compiler version 5.5 VAX 8800, 87000 80386, iSBC 386/20P
8650, 8600, 8500, Intel using file-server
8300,8200 support from the Host
VAX 11/785, 782, 780, (bare machine)
750,730, & MicroVAX II *Derived*
(under VMS 4.4)

DEGREE OF CONFIGURABILITY
I. Linker Capability:

- Any part of a library unit being required loads entire unit.
- Available 6/89: Individual subprograms and/or data objects may be extracted from
packages only.

II. Customization of the Runtime:

- by pragmas
- by compiler switches
- by linker switches
- by modifying/replacing the source to selective runtime routines provided by the
Verdix with purchase of the compiler (i.e. device drivers, etc).
- by modifying the source of the entire runtime (after purchasing it)

III. Documentation provided to help user configure runtime:

VADS User Manual, Configuring VADS <versions number>

IV. Services to customize the runtime:

Verdix supplies support for runtime configuration as part of level 1 and level 2
support contracts. The support is usually by telephone, but for large customers or
where the problems may be a fault of Verdix, Verdix may come on site.

-202-

Guidelines to Select, Configure and Use an Ada Runtinle Environment

V. Cost of runtime source code:

$25,000 to $50,000

VI. Source of Inforulation: Vendor input.

PIWG RESULTS

This information was not supplied by the vendor.

-203-

1

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix Corporation
Host VAX - VMS
Target Intel 80386
Version . Verdlx 5.5025000

18000

951,
9500

9000

8000 F

7500

7000

6500

6000

50

CC

S S

350 au ALCmoet 90 000btso

3000 T0

2500

2-2

1500

100

45 4 45 V 5 4i .45

N n AL Copnet =L 2900 0 92ye

Thecj o NQ bytes

Suntw.I =f AL 9omoens2900 bytes

mum Component was supplied by vendor.

-204-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

QI: What is the resolution of the clock used for delay statements?
Al: Intel configurable, interrupt service chip, 10 microseconds.

Q2: How long, and for what reasons are interrupts disabled?
A2: Not available.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: Pragma PASSIVE - Rendezvous is implemented as procedure call protected by semaphores

Pragma PASSIVE(Interrupt) - Rendezvous implemented as direct hardware interrupt
handler protected by interrupt masking hardware.

Simple (trivial) accepts are implemented as "resumes".
Other specific optimizations are also detected.

Q4: What are the restrictions for representation clauses?
A4: Not supplied.

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
A5: Time slicin, Run-until-blocked,dynamic priorities (Only after next addition to pending
queue), or prionty-inheritence. Time slicing may be applied to individual tasks. Queues are
FIFO by priority.

Q6: What are the restrictions on pragma INLJNE?
A6: None. However if nobody is available then a call will be generated. A pragma
INLINEONLY will suppress gereration of an out-of-line body, but will force availability of
the inline body.

Q7: Is code "ROM"able?
A7: Yes. It is not yet position-independent however, and so must be relinked to be moved.

Q8: Are machine code inserts supported?
A8: Verdix has complete assembler-level machine code for all cross and self- hosted VADS
products. In addition, tools such as the optimizer and debugger can operate on machine
code (Pragma IMPLICITCODE(OFF)) will inhibit optimization and prologue/epilogue
Ada support, for "What you see is what you get" machine code.

09:" What object types are supported by pragma SHARED?
A9: Pragma SHARED inhibits the representation of variables in registers or other
non-write-through memory. Only scalars and other register-sized values are affected.

Q10: What items are configurable for the runtime system?
A10. The items below are configurable for the runtime system.

Maximum number of tasks: Memory dependent
Task time slice default: Max clock value
Tuner resolution: Min clock value or about 10 microseconds
Default stack sizes: Memory dependent
Default task priority: 0-99

-205-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Optional numeric coprocessor: unknown
Dynamic task priority: 0-99
Semaphore operations: Yes
Exception trace: Unhandled interrupts
Fast interrupt entry: Yes
Terminal I/O: RS232
Runtime system variations: Yes

Additional items:

- Mailboxes
- Delay-Until
- User-suppliable memory management
- Timed Semaphores
- Suspend/Resume
- Dynamic task priority/Time-slice
- User-supplied task/program creation/switch/destroy "Call Outs"
- Multi-program support
- Multi-processor support (Remote semaphores, Suspend/Resume, Signal, Memory
mapping, Memory allocation, Cataloging)
- Emulator support
- Target debug monitor support

-206-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Verdix Corp. Sun Microsystems 68020, Microbar GBC68020
Compiler version 5.5 Sun-3/160 using file-server

(under Sun UNIX support from the Host
4.2, Release 3.2) (bare machine)

Compiler version 5.5 MicroVAX II 68020, Microbar
(under UNIX 4.2 GPC-68020
BSD) (bare machine)

Compiler version 5.5 MicroVAX I 68020, Microbar
(under MicroVMS 4.4) GPC-68020

(bare machine)

DEGREE OF CONFIGURABILITY
I. Linker Capability:

- Any part of a library unit being required loads entire unit.

- Available 6/89: Individual subprograms and/or data objects may be extracted from
packages only.

II. Customization of the Runtime:

- by pragmas
- by compiler switches
- by linker switches
- by modifying/replacing the source to selective runtime routines provided by the
Verdix with purchase of the compiler (i.e. device drivers, etc).
- by modifying the source of the entire runtime (after purchasing it)

RTS Configuration Parameters

The following excerpts are from Verdix Ada Development System VADS
documentation. [13]

ALLOWED-WASTE - Heap memory management parameter. This parameter
specifies how much larger the space allocated to a memory request can be than the
size of the request.

DISABLE.MASK - The mask used to disable the interrupts when in a critical region
in the runtime system. This mask will be stored in the status register when a critical
region is entered.

-207-

Guidelines to Select, Configure and Use an Ada Runtime Environment

ENABLEMASK - The mask used to initialize the status register. The
CONFIGJNIT routine should place this value in the status register.

HEAP-BASE - This is the start address of the heap. The heap will grow from this
address toward high memory. The heap is the storage area from which memory is
obtained during the execution of an Ada allocator.

HEAP-TOP - This is the address of the last storage unit in the heap. If, during the
execution of an Ada allocator, there is not enough space in the heap to allocate an
object, the exception STORAGE.ERROR will be raised.

MAXTIME-SLICED.PRIORITY -The range of priorities a task can have is defined
by the subtype PRIORITY in the package SYSTEM.
MAXTIMESLICED.PRIORITY must be in this range.

Any task with a priority higher than MAXTIMESLICED.PRIORITY will not be
preempted by a time slice.

CAUTION: This configuration parameter may be eliminated in a future release.
Verdix recommends that MAXTIMESLICEDPRIORITY not be changed.

NUM..SMALL..BLOCK.SIZES - Heap memory management parameter. This
parameter declares the number of small object sizes to be handled by subpools.

SMALL.BLOCKSIZES - Heap memory management parameter. For each small-
block subpool, this array gives the size of blocks in the pool. The sizes must be in
ascendin& order and each size must be a multiple of eight. When the user allocates a
small object, the heap memory management routines wi!l use a block from the
smallest small-block subpool large enough to handle the request.

STACK-BASE - This parameter defines the initial value of the stack pointer. The
stack grows from this address toward low memory.

STACK.LIMIT - The value of this variable is the lowest address the stack pointer
may assume. This only applies tthe stack of the mainprogram; each task will have
its own STACK.BASE and STACK.IMIT. The size of a task stack can be specified
using the T'STORAGE..SIZE length clause.

TIMESLICINGENABLED - If TIMESLICING.ENABLED is true, then tasks
will be preempted by time slicing. If false, then each task will keep the processor until
it executes a delay, enters a rendezvous, or is preempted by an interrupt.

TIME.SLICE..MSECS - This is an array of integers. It must be declared exactly as it
is shown in the default configuration package, except that the upper bound may be
different and the initial values may be different, but must be static. The upper bound
must be at least as large as MAXTIME..SLICEDPRIORrIY. If time slicing is
enabled, this array is consulted by the RTS to determine the length of a timeslice for
a task having a priority in the range 1 .. MAXTIMESLICEDPRIORITY. Tasks
whose priorities are greater than MAXJTIMESLICEDPRIORITY will not be
timesliced. The value of an element of the array is the number of milliseconds in a
timeslice for a task having that priority.

-208-

Guidelines to Select, Configure and Use an Ada Runtime Environment

CAUTION: This configuration parameter may be eliminated in a future release.
Verdix recommends that MAXTIMESLICED.PRIORITY not be used.

VECTOR-BASE - The value of this variable is the physical address of the 680x0
interrupt vector. On the 68000, this will be 0. On the 68010 and 68020, this should be
the value the VBR register will contain during the execution of the program.

The RTS uses the following three interrupt vectors:

number 5, offset 014 hex, used for zero divide
number 6, offset 018 hex, used for CHK, CHK2 instruction
number 7, offset 01C hex, used for cpTRAPcc, TRAPcc, TRAPV instructions

The RTS initializes these vectors to convert these interrupts into Ada exceptions.

RTS Configuration Subprograms

Configuration routines for which user implemented routines may be substituted are:

AA..POOLNEW - Allocates space from the named pool.

COMPACT - Compaction is expensive: it amounts to a sort of a pool free list by
address followed by a traversal to coalesce all adjacent memory areas. Compaction
can remedy fragmentation. It is called automatically if storage is exhausted. Users
may wish to call it explicitly if they want to avoid a random long delay when an
arbitrary allocation exhausts memory.

CONFIGINIT - This procedure is called very early during the initialization of the
RTS environment after the stack pointer has been initialized and after necessary
ROM has been copied into RAM. CONFIGJNIT is called by the RTS startup
procedure before any of the configuration parameters are used by the runtime system.
Therefore, it is capable of setting the values of RTS configuration variables, if this is
desirable (i.e., the configuration variables do not have to be defined statically).

CREATTLPOOL - CREATE-POOL creates an internal data structure for a pool and
returns a descriptor or identifier for the pool. Pools generally use contiguous memory
where possible to prevent fragmentation.

CURRENT.POOL - Returns the pool identifier for the current pool.

CURRENT-TIME - This function returns the current time in milliseconds since the
INITCLOCK procedure was called. The package CALENDAR calls this function to
determine the current time. See The Clock-Timer below.

DEALLOCATLPOOL - DEALLOCATEPOOL causes all blocks of storage that
have been obtained for the named pool to be returned to the heap's free list. Such
memory is no longer reserved for that pool and may be used for any heap activity.
The heap pool can never be deallocated.

-209-

Guidelines to Select, Configure and Use an Ada Runtime Environment

GETMEMORY - The GET-MEMORY procedure defined in the configuration
package is called by the RTS when the heap memory becomes exhausted.

HALT - HALT is called at the very end of the program, after the main Ada
subprogram has returned. The default HALT procedure clears the register DO and
then performs a TRAP 15 instruction.

HEAP-POOL - Returns the pool identifier for the heap pool. It may be desirable to
use the HEAP-POOL when allocating objects that must persist.

INITCLOCK - INIT-CLOCK is called from the RTS during initialization. The RTS
passes in the address of a routine that must be called by the clock-handling code
whenever the clock interrupts. This routine is also responsible for initializing the
current time for the routine CURRENT-TIME. See also The Clock-Timer below.

PANIC - PANIC is called when an unhandled exception is detected. It is also called if
an internal inconsistency is discovered in the runtime system or if a tasking deadlock
is detected. A string parameter is passed into PANIC. If an unhandled exception is
being reported, the parameter will contain the following message.

"MAIN PROGRAM ABANDONED - EXCEPTION "name" RAISED"

name is the name of the exception. For the exceptions defined by the Ada RM (11.1)
these names will be the following:

CONSTRAINT-ERROR
NUMERIC.ERROR
PROGRAM-.ERROR
STORAGE-ERROR
TASKING..ERROR

SCHEDULEAIARM - The SCHEDULE-ALARM procedure is called by the RTS
to arrange for a clock interrupt at a specified number of milliseconds in the future.
See The Clock-Timer below.

SWITCHPOOL - At system startup, the heap is the current pool. However, by
calling SWlTCH-POOL, a program can select an arbitrary pool as the current pool.

TUR N_OFF_ALARM - Turn off the next scheduled alarm.

The Clock-Timer

The VADS RTS uses the clock for delays, calendar, and, if enabled, timeslicing.

A timer driver package must be written to control the system's clock device. The
body of TIMER-SUPPORT depends on the following types, constants, ana routines
declared in a package named TIMER.

constant COUNTSt'ER.MSEC - number of times the clock ticks ger
millisecond. This should be a positive integer value as close to 1 as possible.
(More ticks per millisecond only serve to decrease the time between clock

-210-

Guidelines to.Select, Configure and Use an Ada Runtime Environment

maintenance interrupts, since the minimum time-slice or delay time is 1
millisecond).

constant MAX.MSECS - Maximum number of milliseconds for which the clock
can be set.

constant MAXCOUNTS - The product COUNTS..PERMSEC *
MAX.MSECS. MAXMSECS should be selected to provide a value of
MAX-COUNTS slightly less than the absolute maximum the clock can
represent, so that CURRENT-TIME can detect overrun.

type COUNTER.T - Type used to represent a quantity of clock ticks.

procedure INITTIMER - Initializes the timer hardware. The timer should be
initialized to MAXCOUNTS. The address passed to this routine should be
written to the clock's interrupt vector.

procedure SET.TIMER - Sets the timer to interrupt after a specified number of
clock ticks.

procedure READ-TIMER - Returns the number of ticks until the next clock
interrupt.

Clock Operation

The default implementation of the TIMER-SUPPORT package assumes that a single
countdown interval timer is used to support both the runtime system's time
requirements (delays and time-slicing), and the calendar package. If this type of time
source is available and acceptable, the TIMER-SUPPORT package might not have
to be modified.

package CONFIG

This package provides definitions for objects used by the RTS and provides hooks
into the RTS allowing the user to replace or modify target board dependent routines.

Package MATH in verdixlib provides mathematical constants, exponential,
loarithmic, circular trigonometric, inverse circular trigonometric, hyperbolic
trigonometric, polar conversion, bessel functions. It is not configurable.

III. Documentation provided to help user configure runtime:

VERDIX Ada Development System VADS Version 5.41 for SUN-3/UNIX = > Motorola
68000 Family Processors.

IV. Services to customize the runtime:

Verdix supplies support for runtime configuration as part of level 1 and level 2
support contracts. The support is usually by telephone, but for large customers or
where the problems may be a fault of Verdix, Verdix may come on site.

-211-

Guidelines to Select, Configtre and Use an Ada Runtime Environment

V. Cost of runtime source code:

$25,000 to $50,000

VI. Source of Information: Vendor input and compiler documentation.

-212-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20. Clock: 20MHz, MC68020/MC68881,
Memory Wait States not supplied. Full optimization with supervisor task enabled,
time-slicing disabled, priority-inheritance disabled. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

A000091 Dhrystone benchmarks* 398.0
A000093 Whetstone benchmarks* 580**

C000001 Task creation/terminate, task type declared in package. 1068.8
C000002 Task creation/terminate, task type declared in procedure. 1068.8
C000003 Task creation/terminate, task type declared in block. 1062.5

D000001 Dynamic array, use and deallocation. 16.0
D000002 Dynamic array elaboration and initialization. 1350.0
D000003 Dynamic record allocation and deallocation. 3750.0
D000004 Dynamic record elaboration and i,:itialization. 5050.0

E000001 Raise and handle an exception locally. 318.8
E000002 Raise and handle an exception in a package. 725.0
E000003 Raise and handle an exception nested 3 deep in procedures. 1018.8
E000004 Raise and handle an exception nested 4 deep in procedures. 987.5
E000005 Raise and handle an exception in a a rendezvous 1212.5

F000001 Set a BOOLEAN flag using a logical equation. 0.0
F000002 Set a BOOLEAN flag using an "if" test. 0.0

G000005 TEXTJO.Get an INTEGER from a local string. 212.9
G000006 TEXTIO.Get a FLOAT from a local string. 1343.8

H000001 BOOLEAN operations on entire PACKed array. 16.0
H000002 BOOLEAN operations on entire array (not packed. 165.6
H000003 BOOLEAN operations on components of a PACKed array. 600.0
H000004 BOOLEAN operations on components of an array (not packed). 179.7
H000005 Move INTEGER to INTEGER (Unchecked-Conversion). 0.0
H000006 Move array of 10 Floats to record (Unchecked-Conversion). 20.9
H000007 Store and extract bit fields, defined by representation clauses. 33.6

1,00001 Simple "for" loop. 0.9
L000002 Simple "while" loop. 1.1
L000003 Simple "exit" loop. 1.1
L000004 Unwrap of loop of 5 iterations with pragma OPTIMIZE(Time). 1.3
L000005 Unwrap of loop of 5 iterations with pragma OPTIMIZE(Space). 1.3

PO0001 Procedure call and return (inlineable), no parameters. 3.2
P000002 Procedure call and return (not inlineable), no parameters. 5.6
P000003 Procedure call and return (compiled separately). 5.9
P000004 Procedure call and return (Pragma INLINE used). 0.0

-212.1-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20 (Continued). Clock: 20MHz,
MC68020/MC68881, Memory Wait States not supplied. Full optimization with supervisor
task enabled, time-slicing disabled, priority-inheritance disabled. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

P000005 Procedure call and return one parameter, in INTEGER). 6.4
P000006 Procedure call and return one parameter, out INTEGER). 6.3
P000007 Procedure call and return one parameter, in out INTEGER). 7.3
P000010 Procedure call and return ten parameters, in INTEGER). 15.2
P000011 Procedure call and return twenty parameters, in INTEGER). 27.3
P000012 Procedure call and return ten parameters, in record-type). 20.1
P000013 Procedure call and return twenty parameters, in recordtype). 36.3

T000001 Minimum rendezvous, entry call and return. 267.2
T000002 Task entry call and return (one task, one entry). 270.3
T000003 Task entry call and return (two tasks, one entry each). 271.9
T000004 Task entry call and return (one task, two entries). 337.5
T000005 Active entry and return (ten tasks, one entry each). 270.0
T000006 Task entry call and return (one task, ten entries). 417.5
T000007 Minimum rendezvous, entry call and return. 182.8
T000008 Measures time to pass integer from producer to consumer task. 775.0

Using standard internal math routines.
WHETSTONE : units are in KWIPS not in microseconds.

-212.2-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-26. Clock: 20MHz, MC68020/MC68881,
Memory Wait States not supplied. Full optimization, suppress checking enforced with
supervisor task enabled, time-slicing disabled, priority-inheritance disabled. PIWG test
suite 1987.

PIWG Test Description Micro -
Name seconds

A000091 Dhrystone benchmarks* 289.0
A000093 Whetstone benchmarks* 606**

C000001 Task creation/terminate, task type declared in package. 1075.0
C000002 Task creation/terminate, task type declared in procedure. 1068.8
C000003 Task creation/terminate, task type declared in block. 1062.5

D000001 Dynamic array, use and deallocation. 11.3
D000002 Dynamic array elaboration and initialization. 1137.5
D000003 Dynamic record allocation and deallocation. 3775.0
D000004 Dynamic record elaboration and initialization. 4875.0

E000001 Raise and handle an exception locally. 318.8
E000002 Raise and handle an exception in a package. 725.0
E000003 Raise and handle an exception nested 3 deep in procedures. 1018.8
E000004 Raise and handle an exception nested 4 deep in procedures. 981.3
E000005 Raise and handle an exception in a a rendezvous 1212.5

F000001 Set a BOOLEAN flag using a logical equation. 1.6
F000002 Set a BOOLEAN flag using an "if' test. 1.5

G000005 TEXTIO.Get an INTEGER from a local string. 216.8
G000006 TEXTIO.Get a FLOAT from a local string. 1343.8

H000001 BOOLEAN operations on entire PACKed array. 15.0
H000002 BOOLEAN operations on entire array (not packed. 162.5
H000003 BOOLEAN operations on eomponents of a PACKed array. 578.1
H000004 BOOLEAN operations on components of an array (not packed). 170.3
H000005 Move INTEGER to INTEGER (Unchecked-Conversion). 0.0
H000006 Move array of 10 Floats to record (Unchecked-Conversion). 17.6
H000007 Store and extract bit fields, defined by representation clauses. 33.6

L000001 Simple "for" loop. 0.9
L000002 Simple "while" loop. 0.9
L000003 Simple "exit" loop. 0.8
L000004 Unwrap of loop of 5 iterations with pragma OPTIMIZE(Time). 1.3
L000005 Unwrap of loop of 5 iterations with pragma OPTIMIZE(Space). 1.3

P000001 Procedure call and return (inlineable), no parameters. 5.6
P000002 Procedure call and return (not inlineable), no parameters. 7.3
P000003 Procedure call and return (compiled separately). 1.3
P000004 Procedure call and return (Pragma INLINE used). 0.0

-212.3-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20 (Continued). Clock: 20MHz,
MC68020/MC68881, Memory Wait States not supplied. Full optimization, suppress
checking enforced with supervisor task enabled, time-slicing disabled, priority-inheritance
disabled. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

P000005 Procedure call and return one parameter, in INTEGER). 3.1
P000006 Procedure call and return one parameter, out INTEGER). 4.0
P000007 Procedure call and return one parameter, in out INTEGER). 4.6
P000010 Procedure call and return ten parameters, in INTEGER). 11.1
P000011 Procedure call and return twenty parameters, in INTEGER). 23.4
P000012 Procedure call and return ten parameters, in recordtype). 16.2
P000013 Procedure call and return twenty parameters, in recorLtype). 31.3

T000001 Minimum rendezvous, entry call and return. 270.3
T000002 Task entry call and return (one task, one entry). 270.3
T000003 Task entry call and return (two tasks, one entry each). 270.3
T000004 Task entry call and return (one task, two entries). 337.5
T000005 Active entry and return (ten tasks, one entry each). 265.0
T000006 Task entry call and return (one task, ten entries). 420.0
T000007 Minimum rendezvous, entry call and return. 181.3
T000008 Measures time to pass integer from producer to consumer task. 775.0

Using standard internal math routines.
*W14ETSTONE : units are in KWIPS not in microseconds.

-212.4-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20. Clock: 20MHz, MC68020/MC68881,
Memory Wait States not supplied. Full optimization, suppress checking enforced, register
variables used (when register variables are not present, that includes both user code and
kernel). Supervisor task enabled, time-slicing disabled, priority-inheritance disabled.
PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

A000091 Dhrystone benchmarks* 241.0
A000093 Whetstone benchmarks* 631"*

C000001 Task creation/terminate, task type declared in package. 987.5
C000002 Task creation/terminate, task type declared in procedure. 993.8
C000003 Task creation/terminate, task type declared in block. 987.5

DO0 21 Dynamic array, use and deallocation. 5.9
D000002 Dynamic array elaboration and initialization. 1125.0
D000003 Dynamic record allocation and deallocation. 3725.0
D000004 Dynamic record elaboration and initialization. 4875.0

E000001 Raise and handle an exception locally. 390.6
E000002 Raise and handle an exception in a package. 603.1
E000003 Raise and handle an exception nested 3 deep in procedures. 868.8
E000004 Raise and handle an exception nested 4 deep in procedures. 1225.0
E000005 Raise and handle an exception in a a rendezvous 1125.0

F000001 Set a BOOLEAN flag using a logical equation. 3.4
F000002 Set a BOOLEAN flag using an "if' test. 3.3

G000005 TEXTJO.Get an INTEGER from a local string. 199.2
G000006 TEXTIO.Get a FLOAT from a local string. 1140.6

H000001 BOOLEAN operations on entire PACKed array. 15.2
H000002 BOOLEAN operations on entire array (not packed. 164.1
H000003 BOOLEAN operations on eomponents of a PACKed array. 490.6
H000004 BOOLEAN operations on components of an array (not packed). 124.2
H000005 Move INTEGER to INTEGER (Unchecked-Conversion). 2.5
H000006 Move array of 10 Floats to record (Unchecked-Conversion). 14.6
H000007 Store and extract bit fields, defined by representation clauses. 33.6

L000001 Simple "for" loop. 2.1
L000002 Simple "while" loop. 2.4
L000003 Simple "exit" loop. 2.4
L000004 Unwrap of loop of 5 iterations with pragma OPTIMIZE(Time). 0.2
L000005 Unwrap of loop of 5 iterations with pragma OPTIMIZE(Space). 0.2

P0O01 Procedure call and return (inlineable), no parameters. 3.0
P000002 Procedure call and return (not inlineable), no parameters. 4.2
P000003 Procedure call and return (compiled separately). 2.9
P000004 Procedure call and return (Pragma INLINE used). 1.7

-212.5-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20 (Continued). Clock: 20MHz,
MC68020/MC68881, Memory Wait States not supplied. Full optimization, suppress
checking enforced, register variables used (when register variables are not present, that
includes both user code and kernel). Supervisor task enabled, time-slicing disabled,
priority-inheritance disabled. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

P000005 Procedure call and return one parameter, in INTEGER). 4.0
P000006 Procedure call and return one parameter, out INTEGER). 4.1
P000007 Procedure call and return one parameter, in out INTEGER). 4.9
P000010 Procedure call and return ten parameters, in INTEGER). 10.9
P000011 Procedure call and return twenty parameters, in INTEGER). 14.5
P000012 Procedure call and return ten parameters, in record-type). 10.2
P000013 Procedure call and return twenty parameters, in record.type). 21.1

TOOOO01 Minimum rendezvous, entry call and return. 262.5
T000002 Task entry call and return (one task, one entry). 264.1
T000003 Task entry call and return (two tasks, one entry each). 265.6
T000004 Task entry call and return (one task, two entries). 331.3
T000005 Active entry and return (ten tasks, one entry each). 257.5
T000006 Task entry call and return (one task, ten entries). 400.0
T000007 Minimum rendezvous, entry call and return. 175.0
T000008 Measures time to pass integer from producer to consumer task. 737.5

'Using standard internal math routines.
WHETSTONE : units are in KWIPS not in microseconds.

-212.6-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20. Clock: 20MHz, MC68020/MC68881,
Memory Wait States not supplied. Full optimization, suppress checking enforced, register
variables used (when register variables are not present, that includes both user code and
kernel), pragma passive (interrupts) used. Supervisor task enabled, time-slicing disabled,
priority-inheritance disabled. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

A000091 Dhrystone benchmarks* 241.0
A000093 Whetstone benchmarks* 631* *

C000001 Task creation/terminate, task type declared in package. 987.5
C000002 Task creation/terminate, task type declared in procedure. 993.8
C000003 Task creation/terminate, task type declared in block. 987.5

D000001 Dynamic array, use and deallocation. 5.9
D000002 Dynamic array elaboration and initialization. 1125.0
D000003 Dynamic record allocation and deallocation. 3725.0
D000004 Dynamic record elaboration and initialization. 4875.0

E000001 Raise and handle an exception locally. 390.6
E000002 Raise and handle an exception in a package. 603.1
E000003 Raise and handle an exception nested 3 deep in procedures. 868.8
E000004 Raise and handle an exception nested 4 deep in procedures. 1225.G
E000005 Raise and handle an exception in a a rendezvous 1125.0

F000001 Set a BOOLEAN flag using a logical equation. 3.4
F000002 Set a BOOLEAN flag using an "if' test. 3.3

G000005 TEXT._JO.Get an INTEGER from a local string. 199.2
G000006 TEXTJO.Get a FLOAT from a local string. 1140.6

H000001 BOOLEAN operations on entire PACKed array. 15.2
H000002 BOOLEAN operations on entire array (not packed. 164.1
H000003 BOOLEAN operations on eomponents of a PACKed array. 490.6
H000004 BOOLEAN operations on components of an array (not packed). 124.2
H000005 Move INTEGER to INTEGER (Unchecked-Conversion). 2.5
H000006 Move array of 10 Floats to record (Unchecked-Conversion). 14.6
H000007 Store and extract bit fields, defined by representation clauses. 33.6

L000001 Simple "for" loop. 2.1
L000002 Simple "while" loop. 2.4
L000003 Simple "exit" loop. 2.4
L000004 Unwrap of loop of 5 iterations with pragma OPTIMIZE(Time). 0.2
LO0005 Unwrap of loop of 5 iterations with pragma OPTIMIZE(Space). 0.2

P000001 Procedure call and return (inlineable), no parameters. 3.0
P000002 Procedure call and return (not inlineable), no parameters. 4.2
P000003 Procedure call and return (compiled separately). 2.9
P000004 Procedure call and return (Pragma INLINE used). 1.7

-212.7-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20 (Continued). Clock: 20MHz,
MC68020/MC68881, Memory Wait States not supplied. Full optimization, suppress
checking enforced, register variables used (when register variables are not present, that
includes both user code and kernel), pragma passive (interrupts) used. Supervisor task
enabled, time-slicing disabled, priority-inheritance disabled. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

P000005 Procedure call and return one parameter, in INTEGER). 4.0
P000006 Procedure call and return one parameter, out INTEGER). 4.1
P000007 Procedure call and return one parameter, in out INTEGER). 4.9
P000010 Procedure call and return ten parameters, in INTEGER). 10.9
P000011 Procedure call and return twenty parameters, in INTEGER). 14.5
P000012 Procedure call and return ten parameters, in record-type). 10.2
P000013 Procedure call and return twenty parameters, in record-type). 21.1

T000001 Minimum rendezvous, entry call and return. 262.5
T000002 Task entry call and return (one task, one entry). 46.9
T000003 Task entry call and return (two tasks, one entry each). 47.7
T000004 Task entry call and return (one task, two entries). 50.0
T000005 Active entry and return (ten tasks, one entry each). 43.4
T000006 Task entry call and return (one task, ten entries). 60.6
T000007 Minimum rendezvous, entry call and return. 175.0
T000008 Measures time to pass integer from producer to consumer task. 184.4

Using standard internal math routines.
** WHETSTONE: units are in KWIPS not in microseconds.

-212.8-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20. Clock: 20MHz, MC68020/MC68881,
Memory Wait States not supplied. Full optimization, suppress checking enforced, register
variables used (when register variables are not present, that includes both user code and
kernel), pragma passive (interrupts) used, pragma passive (semaphores) used. Supervisor
task enabled, time-slicing disabled, priority-inheritance disabled, PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

A000091 Dhrystone benchmarks* 241.0
A000093 Whetstone benchmarks* 631* *

C000001 Task creation/terminate, task type declared in package. 987.5
C000002 Task creation/terminate, task type declared in procedure. 993.8
C000003 Task creation/terminate, task type declared in block. 987.5

D000001 Dynamic array, use and deallocation. 5.9
D000002 Dynamic array elaboration and initialization. 1125.0
D000003 Dynamic record allocation and deallocation. 3725.0
D000004 - Dynamic record elaboration and initialization. 4875.0

E000001 Raise and handle an exception locally. 390.6
E000002 Raise and handle an exception in a package. 603.1
E000003 Raise and handle an exception nested 3 deep in procedures. 868.8
E000004 Raise and handle an exception nested 4 deep in procedures. 1225.0
E000005 Raise and handle an exception in a a rendezvous 1125.0

F000001 Set a BOOLEAN flag using a logical equation. 3.4
F000002 Set a BOOLEAN flag using an "if' test. 3.3

G000005 TEXTJO.Get an INTEGER from a local string. 199.2
G000006 TEXTJO.Get a FLOAT from a local string. 1140.6

H000001 BOOLEAN operations on entire PACKed array. 15.2
H000002 BOOLEAN operations on entire array (not packed. 164.1
H000003 BOGLEA N operations on eompcrents of a PACKed array. 490.6
H000004 BOOLEAN operations on components of an array (not packed). 124.2
H000005 Move INTEGER to INTEGER (Unchecked-Conversion). 2.5
H000006 Move array of 10 Floats to record (Unchecked-Conversion). 14.6
H000007 Store and extract bit fields, defined by representation clauses. 33.6

LOOOO01 Simple "for" loop. 2.1
L000002 Simple "while" loop. 2.4
L000003 Simple "exit" loop. 2.4
L000004 Unwrap of loop of 5 iterations with pragma OPTIMIZE(Time). 0.2
L000005 Unwrap of loop of 5 iterations with pragma OPTIMIZE(Space). 0.2

P000001 Procedure call and return (inlineable), no parameters. 3.0
P000002 Procedure call and return (not inlineable), no parameters. 4.2
P000003 Procedure call and return (compiled separately). 2.9
P000004 Procedure call and return (Pragma INLINE used). 1.7

-212.9-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20 (Continued). Clock: 20MHz,

MC68020/MC68881, Memory Wait States not supplied. Full optimization, suppress

checking enforced, register variables used (when register variables are not present, that

includes both user code and kernel), pragma passive (interrupts) used, pragma passive

(semaphores) used. Supervisor task enabled, time-slicing disabled, priority-inheritance

disabled. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds

P000005 Procedure call and return one parameter, in INTEGER). 4.0

P000006 Procedure call and return one parameter, out INTEGER). 4.1

P000007 Procedure call and return one parameter, in out INTEGER). 4.9

P000010 Procedure call and return ten parameters, in INTEGER). 10.9
P000011 Procedure call and return twenty parameters, in INTEGER). 14.5

P000012 Procedure call and return ten parameters, in record-type). 10.2

P000013 Procedure call and return twenty parameters, in recorLtype). 21.1

T000001 Minimum rendezvous, entry call and return. 262.5
T000002 Task entry call and return (one task, one entry). 46.9

T000003 Task entry call and return (two tasks, one entry each). 48.0
T000004 Task entry call and return (one task, two entries). 49.6

T000005 Active entry and return (ten tasks, one entry each). 44.4

T000006 Task entry call and return (one task, ten entries). 61.9
T000007 Minimum rendezvous, entry call and return. 175.0

T000008 Measures time to pass integer from producer to consumer task. 184.4

Using standard internal math routines.
WHETSTONE: units are in KWIPS not in microseconds.

-212.10-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix Corporation
Host VAX - VMS
Target MC 68020
Version , Verdix 550

2500

9500

9000

9000 O

7500

7000

65M Wg

-5500

5000

450 0o

8 8

350 8

3000

25 Ry

2000_n ,00bye

1500

1000 =2,

43 o n sbv

* b3
In 3 4A 0 CoL >. '1 C C

4. N Ix 0

Snof ALL Components =29,M0 80,000 bytes
*4,000 bytes + 5-10% of program for tables.

nu TextjO0 = 25,000 bytes
RS232 a 1,O0O bytes
TructID0 - 18,000 bytes
Sequentiacijg 9 ,00 bytes

3.3 Component was su~p&ed by vendor.

-213-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdlix Corporation
Host VAX - VMS

Thrget 1 MC 68020

Version , Verdix 5.50
IO

4000. C a)

3500 - U

CD%3000 Cuu ,,° Cu
2500 0

cu ...
2000 . D ,

1500 %D

1000

500 0-

4. .-£ " £ o 0 -E If 0 C

E c 0 0 j
0) C) 0 0)) .' 4. U 0. 0

C Q) z
>

L 4P.' C C3:
Q. 0 0. C U L ko _ a, 0

E in L. CL >
W L a# N 0 O

- U al U tA -Y . -
0 -P x 0 I qu L - 3

- Sum of ALL Components = 26,332 bytes
NOTE, User supptied inFormation For o. particutar impteentation,

-214-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

QI: What is the resolution of the clock used for delay statements?
Al: For V5.7 68020 the duration is 1 millisecond. Clock is user configurable.

Q2: How long, and for what reasons are interrupts disabled?
A2: For V5.768020 the user can configure what interrupt level is disabled while in kernel
at:

1. Adding/Deleting from PENDING queue 5 +5"N/2, Where N = number of tasks on
pending queue.

Adjusting clock - (User configurable)
3. Leave kernel and return to user - (Approximately: 1 microseconds)
4. In passive interrupt tasks - (User configurable)
5. Interrupt handler as it enters the kernel - (Approximately: 3 microseconds)

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: Pragma PASSIVE - Rendezvous is implemented as procedure call protected by semaphores

PrLgma PASSIVE(Interrupt) - Rendezvous implemented as direct hardware interrupt
handler protected by interrupt masking hardware.

Simple (trivial) accepts are implemented as "resumes".
Other specific optimizations are also detected.

Q4: What are the restrictions for representation clauses?
A4: Array element sizes are packed only to power-of-two bits, below 16 bits. Thus a five bit
element will be packed as 8 bits, a 1 bit element is packed as 1 bit. Record fields must be
extractable entirely in one machine register, unless the hardware supplies bit field
instructions (in that case, the instruction restrictions apply). Thus a field of 31 bits must
begin on bit 0 or bit 1 for a 680x0, while a 7 or even 25 bit field may begin anywhere

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
pnorities, run-until-blocked, etc.
AS: Time slicing, Run-until-blocked,dynamic priorities (Only after next addition to pending
queue), or prionty-inheritence. Time slicing may be applied to individual tasks. Queues are
FIFO by priority.

Q6: What are the restrictions on pragma INLINE?
A6: None. However if no body is available then a call will be &enerated. A pragma
INLINE..ONLY will suppress generation of an out-of-line body, but will force availability of
the inline body.

Q7: Is code "ROM"able?
A7: Yes. It is not yet position-independent however, and so must be relinked to be moved.

Q8: Are machine code inserts supported?
A8: Verdix has complete assembler-level machine code for all cross and self- hosted VADS
products. In addition, tools such as the optimizer and debugger can operate on machine
code (Pragma IMPLICITCODE(OFF)) will inhibit optimization and prologue/epilogue
Ada support, for "What you see is what you get" machine code.

Q9: What object types are supported by pragma SHARED?

-215-

Guidelines to Select, Configure and Use an Ada Runtime Environment

A9: Pragma SHARED inhibits the representation of variables in registers or other
non-write-through memory. Only scalars and other register-sized values are affected.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

Maximum number of tasks: Memory dependent
Task time slice default: Max clock value
Timer resolution: Min clock value or about 10 microseconds
Default stack sizes: Memory dependent
Default task priority: 0-99
Optional numeric coprocessor: 68881, soon WEITEK
Dynamic task priority: 0-99
Semaphore operations: Yes
Exception trace: Unhandled interrupts
Fast interrupt entry: Yes
Terminal IO: RS232
Runtime system variations: Yes

Additional items:

- Mailboxes
- Delay-Until
- User-suppliable memory management
- Timed Semaphores
- Suspend/Resume
- Dynamic task priority/Time-slice
- User-supplied task/program creation/switch/destroy "Call Outs"
- Multi-program support
- Multi-processor support (Remote semaphores, Suspend/Resume, Signal, Memory
mapping, Memory allocation, Cataloging)
- Emulator support
- Target debug monitor support

-216-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Package SYSTEM for the MC68000 Operating

package SYSTEM is

type NAME is (m68k);

SYSTEM NAME : constant NAME := m68k ;
STORAGE UNIT : constant := 8;
MEMORYSIZE : constant := 16 777_216;

-- System-Dependent Named Numbers

MIN INT : constant := -2 147 483 648;
MAXINT : constant := 2 147_483_647;
MAX_DIGITS : constant := 15;
MAX MANTISSA : constant := 31;
FINE_ ELTA : constant := 2.0**(-30);
TICK : constant := 0.1;

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER "ange 1..99;

MAXRECSIZE : integer := 64*1024;

type ADDRESS is private;

NOADDR : constant ADDRESS;

function PHYSICALADDRESS (I : INTEGER) return ADDRESS;
function ADDRGT (A, B: ADDRESS) return BOOLEAN;
function ADDRLT (A, B: ADDRESS) return BOOLEAN;
function ADDRGE (A, B: ADDRESS) return BOOLEAN;
function ADDRLE (A, B: ADDRESS) return BOOLEAN;
function ADDRDIFF (A, B: ADDRESS) return INTEGER;
function INCRADDR (A: ADDRESS; INCR: INTEGER) return ADDRESS;
function DECRADDR (A: ADDRESS; DECR: INTEGER) return ADDRESS;
function ">" (A, B: ADDRESS) return BOOLEAN renames ADDRGT;
function "<" (A, B: ADDRESS) return BOOLEAN renames ADDR_LT;
function ">-" (A, B: ADDRESS) return BOOLEAN renames ADDR_GE;
function "<=" (A, B: ADDRESS) return BOOLEAN renames ADDRLE;
function "-" (A, B: ADDRESSl return INTEGER renames ADDR DIFF;
function "+1" (A: ADDRESS; ±NCR: INTEGER) return ADDRESS

renames INCR ADDR;
function "_" (A: ADDRESS; DECR: INTEGER) return ADDRESS

renames DECRADDR;

-217-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Package SYSTEM for the MC68000 Operating

pragma inline (ADDRGT);
pragma inline (ADDRLT);
pragma inline (ADDRGE);
pragma inline (ADDRLE);
pragma inline (ADDRDIFF);
pragma inline (INCRADDR);
pragma inline (DECRADDR);
pragma inline (PHYSICALADDRESS);

private

type ADDRESS is new integer;
NOADDR : constant ADDRESS := 0;

end SYSTEM;

-218-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Advanced Computer VAX-11/785 1750A, Fairchild
Techniques Corp. (under VMS 4.4) 9450/1750A in a
(InterACT) HP 64000 workstation
Compiler version 2.1 (bare machine)

DEGREE OF CONFIGURABILITY

This information was not supplied by the vendor.

PIWG RESULTS

This information was not supplied by the vendor.

RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-219-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Harris Corporation Harris HCX-7 Series 1750A, Tektronix 8540A
Compiler version 1.0 (under HCX/UX, (bare machine)

Version 2.2)

Compiler version 1.0 Harris H1200 1750A, Tektronix 8540A
(under VOS, (bare machine)
Version 6.1)

DEGREE OF CONFIGURABILITY

This information was not supplied by the vendor.

PIWG RESULTS

This information was not supplied by the vendor.

RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-220-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Rockwell Int'l. VAX-11/8650 CAPS/AAMP
Compiler version 1.0 (under VMS, (bare machine)

version 4.5)

Compiler version 2.0 DEC VAX 8650 CAPS/AAMP
(under VMS, (bare machine)
version 4.7)

This compiler is not for sale to the general public, therefore the information was not
provided.

DEGREE OF CONFIGURABILITY

This information was not supplied by the vendor.

PIWG RESULTS

This information was not supplied by the vendor.

RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-221-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Systems Designers DEC VAX-11/7x, 68000, MC68000/10
Software, Inc. VAX 8xxx, VAX implemented on
Compiler version 2C.00 Station, and the MVME 117-3FP

MicroVAX Series board (bare machine)
(under VAX/VMS 4.5 Derived
or MicroVMS 4.5)

Compiler version 3A.00 DEC VAX-11/7xx, 68000, MC68000/10
VAX 8xxxVAX implemented on
Station, (under VMS 4.6) the MVME 177-3 FP
and MicroVAX Series board
(under MicroVMS 4.5) (bare machine)

* Derived

Note: Although a response was not provided for these targets, a response for a bare
MC68020 was provided, and it is reasonable to expect similar capabilities (excluding
performance) for these implementations. Refer to System Designers' bare MC68020 target
processor response.

DEGREE OF CONFIGURABILITY

This information was not supplied by the vendor.

PIWG RESULTS

This information was not supplied by the vendor.

RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-222-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

TeleSoft/Intel VAX 8530 (under 80386, Intel 80386
Corp./TeleLOGIC VMS, version 4.6) on Intel 386-100
Compiler version board (bare machine)

No information was provided due to the recent validation. Time did not permit inclusion of

this in the report. Please contact the vendor for further information.

DEGREE OF CONFIGURABILITY

This information was not supplied by the vendor.

PIWG RESULTS

This information was not supplied by the vendor.

RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-223-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

TeleSoft, Inc. Sun Microsystems MC68000,
Compiler version 1.2 Sun-3/280 Workstation implemented on a

(under Sun UNIX Motorola MVME
version 4.2, release 3.2) 101 board (bare machine)

Compiler version 1.2 Sun Microsystems MC68000,
Sun-3 Workstations, implemented on a
Models: 260, 180, 160, Motorola MVME
150, 140, 110,75, 60, 101 board
50 and 52 (with soft- (bare machine)
ware floating point); *Derived*
50ME and 52 + 152A (with
MC68881 FPC) (under Sun
UNIX version 4.2,
Releases 3.2 & 3.4)

Compiler version 3.2 MicroVAX 11 MC68000,
(under VMS, implemented on a
version 4.6) Motorola MVME

101 board (bare machine)

Compiler version 3.2 DEC VAX family MC68000,
(MicroVAX, VAX station, implemented on a
VAX server, VAX 8xxx, & Motorola MVME
VAX-11 models) 101 board
(under VMS 4.5 and 4.6) (bare machine) * Derived*

Compiler version 1.2 Sun Microsystems MC68010,
Sun-3/280 Workstation implemented on a
(under Sun UNIX Motorola MVME
version 4.2, release 3.2) 117-4 board (bare machine)

Compiler version 1.2 Sun Microsystems MC68010,
Sun-3 Workstations, implemented on a
Models: 260, 180, 160, Motorola MVME
150, 140, 110, 75, 60, 117-4 board
50 and 52 (with soft- (bare machine)
ware floating oint); *Derived*50ME and 52+ 152A (with

MC68881 FPC) (under Sun
UNIX version 4.2,
Releases 3.2 & 3.4)

(Continued on next page)

-224-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

TeleSoft, Inc. MicroVAX II MC68010, implemented on a
Compiler version 3.2 (under VMS, Motorola MVME 117-4 board

version 4.6 117-4 board (bare machine)

Compiler version 3.2 DEC VAX family MC68010,
(MicroVAX, VAX station, implemented on a
VAX server, VAX 8xxx, & Motorola MVME
VAX-11 models) 117-4 board
(under VMS 4.5 and 4.6) (bare machine) * Derived*

Compiler version 1.2 Sun Microsystems MC68010,
Sun-3 Workstations, implemented on a
Models: 260, 180, 160, Motorola MVME
150, 140, 110,75, 60, 133A-20 board
50 and 52 (with soft- with a MC68881
ware floating point); floating point
SOME and 52 + 152A (with coprocessor
MC68881 FPC) (under Sun (bare machine)
UNIX version 4.2, *Derived*
Releases 3.2 & 3.4)

Compiler version 1.2 San Microsystems MC68020, implemented on a
Sun-3/280 Workstation Motorola MVME 133-A-20
(under Sun UNIX board with a MC68881
version 4.2, floating-point
release 3.2) coprocessor (bare machine)

Note: Although a response was not provided for these targets, a response for a bare
MC68020 was provided, and it is reasonable to expect similar capabilities (except
performance) for these implementations. Refer to TeleSoft's bare MC68020 target
processor response.

DEGREE OF CONFIGURABILITY

This information was not supplied by the vendor.

PIWG RESULTS

This information was not supplied by the vendor.

-225-

Guidelines to Select, Configure and Use an Ada Runtime Environment

RUNTIME STORAGE REQUIREMENTS

This infonnation was not supplied by the vendor.

-226-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Verdix Corp. Sequent Symetry 80386, iSBC 386/20P
S-27(under DYNIX, Intel(bare machine)
release 3.0) using file-server

support from the Host

Intel system 320 80386, iSBC 386/20
(under UNIX system Intel(bare machine)
V rel 3.0)

Note: Although a response was not provided for these host/target combinations, a response
for a bire 80386 (with a different host) was provided, and it is reasonable to expect similar
capabilities for these implementations. Refer to Verdix's bare 80386 target processor
response.

DEGREE OF CONFIGURABILITY

This information was not supplied by the vendor.

PIWG RESULTS

This information was not supplied by the vendor.

RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-227-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Verdix Corp. MicroVAX II 32032, National DB32000
Compiler version 5.42 (under MicroVMS, (NS32032) using file-

Version 4.4) server support from the
Host (bare machine)

Compiler version 5.42 VAX 8800, 87000 32032, National DB32000
8650, 8600, 8500, (NS32032) using file-server
8300,8200 support from the Host
VAX 11/785, 782, 780, (bare machine)
750, 730, & MicroVAX II *Derived*
(under VMS 4.4)

Compiler version 5.42 SYS32/20 32032, National DB32000
- (under Opus5 (UNIX (NS32032) using file-

System V), release 2.0) server support from the
Host (bare machine)

DEGREE OF CONFIGURABILITY

This information was not supplied by the vendor.

PIWG RESULTS

This information was not supplied by the vendor.

RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-228-

Guideline to Select, Configure, and Use an Ada Runtime Environment

5. Application Characteristics

The first part of this section describes requirements that can be imposed upon application
software. The requirements can be chosen from the following list:

1). Real-time Response,
2. Hardware Interfacing,
3. Fault-tolerance,
4). Distributed Processing,
5. Multi-level Security,
6. Concurrency,
7. Periodic Processing,
8. Numeric Accuracy,
9. Continuous Operation,
10). Message Processing,
11). High Throughput Rate,
12). Program/Data Size Limitations.

The second part of this section will partition the application domain into various classes.
The classification is not meant to be exhaustive, but rather characteristic. Then, the
requirements outlined above can be mapped into the classes, along with the runtime
components necessary to implement each one. This list will be prioritized based upon:

1. LabTek's experience.

2. Interviews with application engineers. (LabTek performed extensive
interviews with application engineers under a previous contract. [1])

3. ARTEWG's, First Annual Survey of Mission Critical Application
Requirements for Runtime Environments. [3]

4. Current literature.

Figure 3., 'The Application Domain", presents the classes of applications that will be
covered in detail. For each class of application the following information will be provided:

1. Brief description of the class.

2. Typical system requirements for an application of this nature.

3. A prioritized list of the runtime environment features needed for this class of
applications.

-229-

Guideline to Select, Configure, and Use an Ada Runtime Environment

jAppca-t ion Domain

Electronic Worfar'e I Operoating Systems

V/eQpon Guida~nce Naviga~tion System

'FEieiontroi] Arfcial Intelligencel

Robotics/Process
lationSystemsContro

C 31 Systems

Figure 3. The Application Domain

5.1 Electronic Warfare

Brief description: EW systems are used to transmit and/or receive electronic or
electro-optical radiation, usually for observation or communication; or to deny an adversary
use of their electronic systems.

System requirements: Refer to subheadings below.

Runtbe Environment Features Required (Prioritized): Refer to subheadings below.

5.1.1 Radar Systems

Brief description: Transmission of electronic signals which reflect off of objects and return
to a sensor for the purposes of detecting and locating objects.

-230-

Guideline to Select, Configure, and Use an Ada Runtime Environment

System requirements: Real-Time Response, Hardware Interface, Distributed Processing,
Concurrency, Periodic Processing, Numeric Accuracy, Message Processing (see also "Signal
Processing" below).

Runtime Environment Features Required (Prioritized): Interrupt Management, Rendezvous
Management, Time Management.

5.1.2 Electronic Counter Measures (ECM)

Brief description: ECM systems vary considerably. In general, they are designed to deny an
adversary use of their communications or surveillance systems by transmitting radiation
which "jams" the adversary receivers. They may be used in conjunction with Electronic
Support Measures (ESM) which is used to receive and classify the adversary's transmissions.
Electronic Counter Counter Measure (ECCM) systems in-turn are used to nullify the effect
of ECM systems.

System requirements: Real-Time Response, Hardware Interface, Distributed Processing,
ncurrency, Periodic Processing, Numeric Accuracy, Message Processing (see also "Signal

Processing" below).

Runtime Environment Features Required (Prioritized): Interrupt Management, Rendezvous
Matiagement, Time Management.

5.1.3 Signal Processing

Brief description: Signal Processing systems are used to process the raw (digitized) return
data received from sensor inputs. Typically data is received at rates exceeding one million
bytes per second (1MB/s) and must be processed in very short periods of time. Custom
processors are used to implement quick Multiply/Accumulate operations in support of Fast
Fourier Transforms (FFTs), Convolutions, and other algonthms used to reduce or
transform input data to meaningful values.

System requirements: High Throughput, Real-Time Response, Distributed Processing,
Periodic Processing.

Runtime Environment Features Required (Prioritized): Processor Management, Commonly

Called Code Sequences.

5.2 Weapon Guidance

Brief description: Weapon guidance can be autonomous (self-guided) or in conjunction with
platform-based support. In either case, the intent is to direct the in-flight weapon to a
(possibly moving) target. Target tracking and prediction, attitude control, and servo loop
processing are included as major portions of the system. If the system includes a platform
component, message processing would also be involved.

System requirements: Real-Time Response, High Speed Interface, Concurrency, Periodic
Processing, Program/Data Size Limitations, Message Processing.

Runtime Environment Features Required (Prioritized): Interrupt Management, Time
Management, Rendezvous Management, I/O Management.

-231-

Guideline to Select, Configure, and Use an Ada Runtime Environment

5.3 Fire Control

Brief description: Fire Control systems determine the elevation, azimuth, and range values
for ballistic trajectories. In fully automatic systems, it includes controlling actuators toposition the weapon aimpoint.

System requirements: Real-Time Response, Numeric Accuracy.

Runtime Environment Features Required (Prioritized): Interrupt Management, I/O
Management, Commonly Called Code Sequences, Time Management.

5.4 Simulation Systems

Brief description: Simulation systems (or more correctly, emulators) are used to provide the
actions of the systems they emulate without having the expense or schedule delay of the real
system. They are typically used to test equipment that would normally connect to the
simulated device, or to provide early feedback to designers on how a system will behave
under controlled circumstances.

stem requirements: Real-Time Response, H/W Interface, Distributed Processing,
oncurrency, Periodic Processing, Numeric Accuracy, Message Processing, High

Throughput.

Runtine Environment Features Required (Prioritized): Time Management, Interrupt
Management, Rendezvous Management, 1/0 Management, Dynamic Memory
Management, Processor Management.

5.5 C31 Systems

Brief description: Command, Control, Communications, and Intelligence systems typically
are used to assist in battle management at various levels, from front-line troops to top-level
officers.

Stem requirements: Fault Tolerance, Distributed Processing Multi-Level Security,
Concurrency, Continuous Operation, Message Processing. Space based C3 systems
frequently have Program/Data Size Limitations as well.

Runtime Environment Features Required (Prioritized): I/O Management, Rendezvous
Management, Dynamic Memory Management, Time Management, Exception
Management, Task Activation, Task Termination.

5.6 Operating Systems

Brief description: Operating Systems control the execution of programs running on one or
more processors.

System requirements: H/W Interface, Fault Tolerance, Distributed Processing, Multi-level
Security, Concurrency, Message Processing.

Runtime Environment Features Required (Prioritized): Processor Management, I/O
Management, Dynamic Memory Management, Task Activation, Task Termination, Target

-232-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Housekeeping Functions, Exception Management, Interrupt Management, Time
Management.

5.7 Navigation Systems

Brief description: Navigation systems determine the current position, direction, velocity, and
acceleration of the vehicle in which they are contained.

System requirements: Real-Time Response, Periodic Processing, Numeric Accuracy,
Message Processing.

Runtime Environment Features Required (Prioritized): Interrupt Management, Rendezvous
Management, I/O Management, Commonly Called Code Sequences.

5.8 Artificial Intelligence

Brief description: Al systems mimic human behavior to a greater degree than typical
computer based systems.

System "requirements: High Throughput, Distributed Processing.

Runtime Environment Features Required (Prioritized): Dynamic Storage Management,
Commonly Called Code Sequences, I/O Management for Data Base driven systems, and
Processor Management for parallel systems.

5.9 Robotics/Process Control

Brief description: Robotics and Process Control systems are characterized by having the
ability to physically manipulate the environment in which the are located.

System requirements: Real-Time Processing, H/W Interface, Distributed Processing,
Concurrency, Numeric Accuracy, Continuous Operation, Message Processing.

Runtime Envirnnment Features Required (Prioritized): Interrupt Management, Rendezvous
Management, I/O Management, Processor Management, Time Management, Exception
Manageme.it.

-233-

Guideline to Select, Configure, and Use an Ada Runtime Environment

6. Guidelines

This guideline contains the following three sections: To Select a runtime environment, To
Configure a runtime environment, and To Use a runtime environment.

6.1 To Select a Runtime Environment

This section contains a checklist of questions an application developer should consider
before actually making the commitment to use a particular runtime environment for a given
application. Once the checklist has been refined to address the system requirements, the
compiler vendor should be approached for the specifics. The 'Ada-Europe Guidelines for
Ada Compiler Specification and Selection [71 was used as a starting point for this
information. It was augmented to include additional considerations specific to real-time
applications.

6.1.1 Documentation

Complete and accurate documentation is essential for real-time systems development.
Often predictability is just as important as performance. A software managers' greatest fear
is discovering an undocumented "feature" of some vendor supplied software which prevents
progress. Projects can be delayed weeks or even months while trying to isolate subtle
interactions of an executive and finding a solution once the anomaly is understood. Typical
documentation may consist of a selection of the following:

a.) Installation Guide
b.) Appendix F of the reference manual
c.) User Reference Manual
d.) Target Reference Manual
e.) and/or Runtime Configuration
f.) Runtime Libraries

SProgram Libraries
h.) Implementation Details
i.) Ada Compiler Validation Summary Reports (usually not supplied by the
compiler vendor, available through NTIS)

Which documents listed above are available to the user?

Is there a separate charge for specific documentation?

6.1.2 Degree of Configurability

Before actually selecting the compilation system to be used for a particular application it is
important to know its degree of configurability.

Questions to ask..

What features are configurable (ie. interrupts, runtime initialization, runtime libraries,
tasking algorithm, timer resolution, etc.). A more extensive list of configurable
components is provided under the section "To Configure a Runtime Environment" below.

Can the runtime system be configured by the user through a linker?

-234-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Are there any tools or components available which assist in customizing the runtime
library?

Is the configurable data used by the linker provided to the user for review, modification,
and configuration management?

Is the implementation of the runtime features organized so that some modules of the
runtime can be excluded from the application's execution image if the application does not
require features implemented by those modules?

Is the documentation adequate?

6.1.3 Chapter 13

It is important to find out to what extent features of Chapter 13 are implemented by the
compiler on the target machine.

Questions to ask-

Are there any restrictions on the representation clauses and implementation dependent
features such as:

a.) Length Clauses
b.) Enumeration Representation Clauses
c.) Record Representation Clauses
d.) Address Clauses
e.) Interrupts (entry address clauses)
f.) Size Representation Attributes
g.) Fixed Point SMALL Attributes

.) Machine Code Insertions
i.) Interface to Other Languages

Unchecked Storage Deallocation
Unchecked Type Conversions

Does the compiler support fast interrupts (i.e., restricted interrupt entries)?

6.1.4 Appendix F

The reference manual of each Ada implementation must include an appendix (called
Appendix F) that describes all implementation-dependent characteristics. [5] p

Questions to Ask:

What is the form, allowed places, and effect of every implementation-dependent pragma?

Wh't are the names and types of every implementation-dependent attribute?

What is the specification of the package SYSTEM?

What conventions are used for any implementation-generated names denoting
implementation-dependent components?

-235-

Guideline to Select, Configure, and Use an Ada Runtime Environment

What is the interpretation of expressions that appear in address clauses, including those for
interrupts?

Are there any implementation-dependent characteristics of the input-output packages?

6.1.5 Target Dependent Information

Target dependent information is needed by the semantic analysis part of an Ada compiler.
Examples include the size of INTEGER type, and the memory model. It can be supplied
by:

a.) recompiling packages STANDARD and/or SYSTEM
b.) a parameter file, or command line options
c.) incorporating a package which is linked into the compiler,
d.) being built into the compiler.

Queaions to ask

How is target dependent information supplied to the compiler?

How easy is it to change for a new target?

What is the specification for package STANDARD?

6.1.6 Target Initialization

Target dependant actions might be required to initialize the target following power-up or a
reset-sequence. This would be modified for targets that have different initialization
requirements. Some requirements might pertain to:

a.) Processor Mode
b Interrupt Enable

Memory Management Setup
d.) Co-processor Setup

Questions to ask

What configuration parameters are supplied with the compiler?

What assumptions (if any) are made about the target's state before initialization?

What default declaration, and purpose, does each parameter have?

What steps are followed when initializing the target machine?

Does the Ada runtime depend upon static initialization (parameters fixed at link time), and
if not how does this effect ROM and RAM?

Are there configuration routines for which user implemented routines may be substituted?

6.1.7 Target i/O

-236-

These types of problem usually do not manifest themselves in obvious ways, but rather

result in working but unreliable systems. They may pass the acceptance testing and operate

properly for months only to fail in a catastrophic fashion during a critical moment.

It is hoped that this guide will assist software developers through some of the problems in

adopting Ada for real-time embedded projects. By providing information on how Ada

implementations operate, there will be a reduction in the uncertainty associated with

switching from assembly language executives, where every aspect is provided in minute

detail, to Ada where the executive functions appear as a black box (or magic).

Guideline to Select, Configure, and Use an Ada Runtime Environment

Target I/O might be modified when targets use a different I/O device than originally
supplied by the compiler. Devices which may vary for different targets are:

a.) Serial ports
b.) Parallel ports
c.) Monitors
d.) Disk drivers

Questions to ask

What I/O devices does the compiler support? (i.e. Serial I/O, Parallel I/O)

Are the standard I/O devices and file systems functional on embedded systems without
change? If so, what packages are affected by this and what are their limitations?

Is there a facility available which allows the I/O packages to give a program running on the
target system access to the host file system?

6.1.8 Target Timer

The target timer might be modified when targets use a different timer device or the timer
device is located elsewhere than the compiler originally supplied. Timer devices might vary
in the following way:

a.) Configuration
b.) Timer interrupts
c.) Tick Interval

Questions to ask

Is the timer configuration necessary on the bare machine?

If no references to time are made within an application, can all time-related runtime code
be eliminated?

How is the timer interrupt routine declared and is it capable of modification?

6.1.9 Data Representation

The compiler vendor should provide details as to how the various Ada types are
represented. This is especially important if other languages are to be used with Ada or if
special I/O routines are to be written. Data representation can be categorized under the
following headings:

a.) Addressing Structure (segmented, linear, paged)
b.) Alignment Restrictions (word; byte)
c.) T* Implementation (i.e. Character, Integer, Boolean, Floating Point,
Enumeration, Access, and Record)

-237-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Questions to ask-

What is the mapping of scalar types and subtypes?

What is the mapping of arrays (column major order)?

What is the mapping of records without discriminants?

What is the mapping of records with discriminants?

What is the effect of having arrays depending on discriminants? (Is the heap used for such
objects under certain circumstances?)

What is the mapping of access types?

What is the effect of pragma PACK?

What predefined types are supported (i.e. LONG-INTEGER, SHORTJINTEGER)?

What are the rules governing the conversion to and from floating point types (i.e.,
rounding)?

What are the calling conventions of subprograms and how are non-scalar parameters
passed?

6.1.10 Implementation of Tasking

A task logically operates in parallel with other parts of a program. It is written as a task
specification (which specifies the name and formal parameters of its entries), and a task
body which defines its execution. A task unit is one of the kinds of program unit. A task type
is a type that permits the subsequent declaration of any number of similar tasks of the type.
A value of a task type is said to designate a task. [5] Some facilities which are provided tor
the implementation of tasking are:

a. Task Creation
b. Queuingc. Timing
d. Scheduling
e.) Task Dispatching
f. Rendezvous
g.) Termination

Questions to ask.

What is the storage management technique used (e.g. acquisition of stack and heap space
for a new task) in a multitasking program?,

What is the method of implementing the Ada rendezvous mechanism? For example, an
Ada runtime kernel or monitor may be defined, or the implementation may rely on target
operating system facilities.

-238-

Guideline to Select, Configure, and Use an Ada Runtime Environment

In the absence of latencies due to application software, what is the guaranteed accuracy of
the delay statement, and what application characteristics can alter this basic accuracy?

Is tasking supported on multiprocessor architectures?

What is the method used for associating external interrupts with task entries?

. , ,re possible and what are the circumstances under which they
can be achevedo

6.1.11 Interrupt Handler/Interrupt Vectors

External events and incoming data are typically handled by interrupt handlers. The
interrupt vector directs the transfer of control to the appropriate handler.

Questions to ask-

What mechanisms are supported for application software to handle an interrupt?

How do the interrupt vectors used by the runtime get initialized?

Are software interrupts (traps) supported in the same way as hardware interrupts?

What restrictions are imposed on interrupt handlers with regard to accessing data outside
the local scope of the handler?

6.1.12 Storage Management

The following are four classes of storage allocation classifications for a typical Ada
program.

a. Access - an access value is either null or refers to an object created by an
allocation (storage is typically allocated from the heap).

b.) Local - used for objects that are declared in subprograms or in packages
nested within subprograms. Local storage is typically allocated from the
runtime stack.

c.) Static Allocation - Used for objects only when they exist throughout the
ENTIRE execution of the program which contains the objects.

d.) Temporary - Used for non-scalar values resulting from expressions or
functions. Such storage is allocated from the runtime stack or heap when
needed and released once the value is discarded or assigned.

Questions to ask

What is the primary stack management technique being used? (Main program stack.)

Is there a secondary stack management being used? (Dependent task stacks.)

-239-

Guideline to Select, Configure, and Use an Ada Runtime Environment

What is the method of allocating and deallocating storage for tasks?

How are access type collections managed?

How is the heap managed?

What is the storage reclamation (garbage collection) technique used?

What is the runtime system storage size?

6.1.13 Subroutine Call and Parameter Passing Conventions

The method used for passing parameters (especially for calling non-Ada subprograms) must
be known. Some calling conventions and parameter handlings are:

a.) Call Site - An example is when the responsibility lies on the user to strip
parameters from the stack upon a return. (calling conventions)

b.) Stack Frame & Prologue/Epilog Conventions - This pertains to the
direction that the stack grows, the position of the frame pointer, and the
position of the stack pointer. (calling conventions)

c.) Descriptor Block - parameters are accessed indirectly through a descriptor
table (parameter passing convention).

d.) The representation of Boolean, Fixed Point, and Floating Point arguments.
(parameter passing conventions)

Questions to ask.

What is the parameter passing method used?

What is the mechanism used for returning results from a function (especially where the
result is a record or unconstrained array type)?

6.1.14 Saving Machine State During a Context Switch

Depending on the application, registers and floating point coprocessor context may or may
not be saved and must be changed as required.

Questions to ask:

Under what circumstances do the registers get saved in a context switch, especially floating
point registers?

6.1.15 Exception Handling

To raise an exception is to abandon normal program execution so as to draw attention to
the fact that the corresponding situation has arien. Executing some action, in response to
the arising of an exception, is called handling the exception. The compiler vendor should

-240-

Guideline to Select, Configure, and Use an Ada Runtime Environment

describe the mechanism for finding the appropriate handler when an exception is raised. [5]
Exception handling is comprised of the following:

a.) Raise Action - Result of a raise statement or failed runtime check (i.e.
overflow)
b.) Trap Action - A hardware initiated exception
c.) Exception Propagation

Questions to ask-

What is the exception identification scheme used? (How are exception numbers
allocated?)

What is the mechanism used for exception handling?

What is the overhead associated with using exception handling?

What is the relationship with hardware and host operating system exceptions?

6.1.16 Xinhandled Exceptions

A procedure which is a "last resort" handler should be provided for exceptions that are
propagated out of an Ada program. This provides a useful debugging tool with compilation
systems that provide a sparce-evel trace back.

Questions to ask

Does the compiler provide debugging and diagnostic messages when an exception causes
program termination?

6.1.17 Generics

A generic unit is a template either for a set of subprograms or for a set of packages. A
subprogram or package created using the template is called an instance of the generic unit.
A generic instantiation is the kind of declaration that creates an instance. A generic unit is
written as a subprogram or package but with the specification prefixed by a generic formal
part which may declare generic fornal parameters. A generic formal parameter is either a
type, a subprogram, or an object. A generic unit is one of the kinds of program unit. [5]

The compiler vendor should describe the runtime implications of generics.

Questions to ask

What are the circumstances under which it is possible to share code between two different
generic instantiations? Is any user control available?

Is there any additional object code or data requirements imposed by the use of generics
(especially when code shanng is in use)?

Are there any limitations to the compilation of generic units?

-241-

Guideline to Select, Configure, and Use an Ada Runtime Environment

6.1.18 I/O Interfaces

The compiler vendor should describe the I/O which the runtime supports. The facilities that
would be supported would be found in:

a.) Package DirectIO
b.) Package Sequential_lO
c.) Package TextlO
d.) Package LowLeveUIO

Questions to ask"

What is the functionality of the above listed I/O packages with nonstandard I/O devices?

What are the limitations of the above listed I/O packages with nonstandard I/O devices?

Is an interface to the target provided for LowLeveUIO?

Is formatted 1/0 available?

Is binary I/O available?

Are there any restrictions on types that can be instantiated for input-output?

6.1.19 Compiler Capacity and Tool Availability

When selecting a compilation system it is important to investigate the other tools available,
such as: design tools, library management, configuration management, and debugging. An
integrated toolset is best.

Questions to Ask.

What are the capacities of the compiler (i.e. number of nested loops, number of nesting
levels in procedures which are separately compiled, number of variables allowed)?

What are the known compiler deficiencies?

Are design tools provided?

Are configuration management tools provided?

Are library management tools provided?

Are debugging tools provided?

Are test support tools provided?

What process must be followed for the inclusion of the runtime system into an application?

Are there any tools or components available which assist in customizing the runtime
library?

-242-

Guideline to Select, Configure, and Use an Ada Runtime Environment

6.2 To Configure a Runtime Environment

Although the instruction set of a particular architecture provides a level of standardization,
features such as main memory size, method of I/O, memory management, floating point
coprocessors, and power up sequences are necessarily machine dependent. For this reason,
the user will probably need to make certain alterations to the runtime support provided to
fit a particular environment.

This section will present the features that may be configured into a runtime. However, not
all vendors provide the same degree of configurability, or provide the same methods of
configuring the components. For example, there are essentially three configuration
mechanisms:

1. User modifies vendor supplied runtime routines (and recompiles, reassembles, as
necessary). Usually there are two parts to the runtime, a part the user can configure,
which is referred to as user-configurable, and a permanent part, or non-configurable
p art of the runtime. The user-configurable code is typically a set of assembly
language routines, called from the permanent part of the RTS and generated code.
Calls to the user-configurable code can be made directly from an Ada program via
pragma INTERFACE. [10] A set of rules or conventions must be followed to ensure
compatibility between the user-configurable and non-configurable parts of the
runtime.

2. Linker options. These are switches on the link phase and can span the gamut from
very simple to complex. They will be discussed in more detail below.

3. Vendor supplied pragmas.

Confiuration of the RTE takes place after the application developer has selected a
compilation system. Hopefully, the compiler selection was performed with the system
requirements m mind. Section five of this report details typical system requirements. The
list is representative rather than exhaustive, therefore, any given system will most likely
have some combination of the requirements detailed there.

It is important to obtain all of the documentation for the selected compilation system.
Vendors provide a separate manual titled 'Target Handbook", or "Runtime System
Configuration Guide". A technical person to contact at the vendor site is often very helpful.
This may require a maintenance contract with the vendor, which is generally recommended.

Features that typically need configuring are: bootstrap (power up) sequences, timers,
interrupt vectoring, main memory configuration parameters, and method of doing I/O.
These are typically machine-dependent and the user will probably need to make certain
alterations to the runtime support to fit a particular environment.

6.2.1 Bootstrapping

The start up code (or bootstrap code) is the module (or modules) invoked when the system
is reset. Its primary function is to initialize the stack, transfer control to the RTS execution
code, and possibly terminate the program upon completion. Other initializations performed
at this time may include:

-243-

Guideline to Select, Configure, and Use an Ada Runtime Environment

- Initialization of the main program stack.
- Initialization of primitive storage management data structures.
- Hardware initialization.
- Initialization of I/O routines.

6.2.2 Interrupt Vector

The interrupt vector table must be established before the execution of Ada code begins.
The table can be initialized by:

- Placing the preset values of the interrupt vector with user values (via a table).
- Explicitly initializing the values with user written code. This code must be called or
executed by the start up code.
- Specifying address clauses for task entries in the Ada program.
- Provide default handlers for all vectors.

The first method is typically used in a bare system, the second method used with an
underlying operating system.

6.2.3 User-Configurable Module Dependencies

For each user-configurable module, the following must be known:

- Its name as known to the non-configurable runtime modules.
- Any input parameters required.
- Any output parameters returned.
- Any side effects resulting from its usage.
- Any user-configurable runtime module dependencies.
- Any non-configurable runtime module dependencies.

Special care should Lc made to preserve registers, especially the interrupt status.

6.2.4 Timer Interrupt

The timer interrupt has many uses. Depending on how it is implemented, it can be used:

- to allow user direct access to the timer interrupt
- by package CALENDAR

by tasking/time-slice scheduling
- by the delay statement in a program that uses tasking.

Resolution of timer interrupts is usually programmable. Be advised that if timer interrupts
are set to occur frequently that the overhead for this function could be substantial. For
t xample, if interrupts are programmed for every millisecond, and the clock interrupt
ruutine takes 300 microseconds, 30o of the CPU time will be spend servicing the timer
interrupts. Since timer interrupts are often a high priority, care must be taken to insure that
lower level interrupts will not be deferred beyond their deadline by a timer interrupt.

6.2.5 Linker Options

Linker switches/parameters could be used to specify:

-244-

Guideline to Select, Configure, and Use an Ada Runtime Environment

- whether or not a floating point coprocessor is to be used in the system.
- the total amount of memory available.
- the amount of storage to be allocated to the system heap.
- the amount of storage allocated to the collection area.
- the amount of storage allocated to the stack area.
- the minimum size of an element on the heap.
- the maximum number of active tasks. This would be used to determine the amount
of storage required by the task control blocks.
-a pointer which designates the beginning of the task control block area.
-whether time-slicing is to be enabled.
- the length of time for the time-slice interval.
- the default size of a library task stack. A library task is a task where the task body is
declared in a package at the outermost level.
- the main rogram stack size.
. the default priority for all tasks, that can be overridden by the pragma PRIORITY.
- the length of time between timer interrupts and the resolution of the delay timer.
- the lowest interrupt permitted in the Ada code for standard interrupt tasks, i.e., an
interrupt entry defined in an address clause.
-the highest interrupt accessible in the interrupt vector table for Ada code using
siandard interrupt tasks. i.e., an interrupt entry defined in an address clause.
- the range of words reserved for the interrupt vector table used for Ada standard
interrupt tasks, i.e., and interrupt entry defined as an address clause.

Special care must be taken to insure that the switches used during linking are maintained by
configuration management. Typically this is achieved by performing the link by using a
command file which is placed under configuration management control.

6.3 To Use a Runtime Environment

There are two essential aspects to using an Ada RTE. These are communicating tne
characteristics of a configured RTE to the software designers and maintaining the
configuration for future releases. Since the behavior of an Ada program can vary
tremendously based on the composition of the RTE, it is crucial that the dependencies
between the application program and the RTE be well documented.

The documentation of the configured RTE should be in the form of a user's guide which
would provide details on how RTE features are supported, and Ada source comments
which indicate the dependence on those features within the application program. The
user's guide should be required reading for all software designers, and should assist them in
their analysis and program architecture. For example, if the RTE implements a time-sliced
based scheduler, this design decision is likely to have a major impact on the software
architecture of a real-time system.

Once the software is designed, the dependencies on the particular underlying RTE should
be well documented in the form of regular comments that can be automatically extracted
from the source code. Typical methods suggest the use of specific keywords in the
embedded PDL (program design language) such as:

"-/Requires: Automatic Storage Reclamation", or

"--/Assertion: Priority-based preemption guaranteed within 500 microseconds".

-245-

Guideline to Select, Configure, and Use an Ada Runtime Environment

These dependencies should obviously be summarized in the "Software Detailed Design
Document (SDDD)".

The second aspect: RTE configuration management, imposes very serious considerations
on an Ada software development. Issues such as validation, reliability, maintainability, and
liability, complicate real-time applications that require modifications to the RTE. The main
overriding concern is guaranteeing that subsequent 'builds" of a system have the proper
RTE composition. At a minimum, this implies that the RTE generation/configuration
process is somewhat automated and the RTE is generated using this process prior to critical
system builds.

Ideally, the RTE build process should: a.) document all of the configuration parameters
(including versions of allincluded components), b.) provide a unique serial number for the
documentation file, c.) and incorporate the serial number in the binary image of the RTE.
This would permit backtracking of binary to the source level composition.

The configuration issue is further complicated by design changes that require different RTE
composition and/or new maintenance releases of the vendor supplied RTE. The scope of
all RTE changes must be well understood, and reviewed with respect to the application
program RTE dependency summary discusse'i above.

The interaction between application programs and the Ada RTE can introduce anomalies
that manifest themselves in insidious ways. This dictates extreme care when making any
RTE modifications. Experience has provided numerous examples of programs that crash
after several days of seemingly flawless execution; or programs that deadlock at apparently
random intervals because of small changes made to the RTE. Clearly, RTE management
should be performed only by the most competent personnel on the development team.

-246-

Guideline to Select, Configure, and Use an Ada Runtime Environment

7. Effects of Runtime Issues on the Development of Reusable Software

The flexibility allowed in Ada runtime implementations makes it possible to solve a wide
variety of problems with the Ada language. However, this flexibility usually introduces
serious compatibility problems when attempting to reuse software, especially in real-time
embedded applications. These applications have stringent timing requirements which make
their correct execution much more sensitive to the implementation approach. For example,
a queue manager may depend on access types or the raising of an exception on an access
check. The overhead associated with allocating and deallocating storage, and in raising
exceptions can vary substantially among different runtime configurations. The impact is
that a "reusable" software component that works well on one runtime configuration may
have very poor performance on another configuration.

In cases where storage for allocators is not reclaimed (for performance reasons), some
software components may cause the entire system to fail unexpectedly due to a storage
error. The error may even occur in another subprogram that ran out of storage because thereused" component allocated too much storage. This make isolating the problem very
difficult because many subprograms share a common resource (heap memory).

The clear implication is that "reusable" components may not use any implementation
dependent features of the language. This is, of course, impossible to achieve if efficiency is
a concern. What is required instead is "configurable reusable components". This can be
achieved by providing a large collection of components, where the appropriate version can
be selected for each particular application. Given the number of variants in the runtime, it
is impractical to supply all possible permutations, but rather some mechanism should be
supplied to combine characteristics of components. To a large extent, this may be
achievable using generics. It may also be useful to have a tool which would "build" the
correct component based on supplied specifications of requirements. That is, by supplying
the tool with the characteristics of the confilgured runtime, it could select the combinations
of reusable components that match the runtime capability. In the above example where no
storage reclamation is done, the component "build" tool would not select a reusable
component that is likely to allocate and deallocate storage continuously throughout
program execution.

Reusability for real-time software is generally improved as the available processing capacity
(including memory size) greatly exceeds what is required for an optimal implementation.
This tends to eliminate the fine tuning that is typically required in real-time applications.
To the extent that the cost effectiveness of reusing software outweighs the additional cost of
hardware (processors/memory), future systems may find reuse more attractive for
embedded systems. Clearly, design approaches which allow additional processing capacity
to be effectively utilized (the addition of more processors) lend themselves to being able to
accept some performance penalty for using non-custom software. In return for the
additional hardware cost, the development and maintenance costs are likely to be far less.
The tradeoff must be made on a case by case basis and will depend largely on the number
of systems to be produced.

-247-

Guideline to Select, Configure, and Use an Ada Runtime Environment

8. Summary

The period of performance for this contract spanned nine months. The information
contained in this report represents the state of the technology at the time it was issued.
Reports of this nature can become outdated if not maintained, but it is felt that even though
a particular version of the compiler presented may become obsolete, important information
can be learned from the contents of this report for at least the next few years. For example,
the guidelines section will not change dramatically until the tcchnology changes
dramatically. It is believed this section will remain valid for about five years.

A report Tf this nature was necessary because o, the void of information suppiieo by
vendors regarding the runtime specifics. Users were having difficulty getting detailed
information on Ada implementations. As a result, they frequently selected compilation
systems that did not match their application requirements. The difficulties they had, due to
the poor match, produced a bad image for Ada, in general.

Providing information on compilers will help alleviate the problems and promote the wide
use of Ada, and that was the intent of this report. For the most part, it was difficult to
obtain the runtime information from the vendors. Although it is recognized that their main
function is to produce a "production quality" compiler, this information must be readily
accessible for the user to choose a compiler implementation which suits a given application.
Often it took repeated phone calls and contact with a technical person to get the proper
answer. In fairness to the vendors, some were very helpful and informative.

Compilation systems are maturing, and this can be seen from the issues the compiler
vendors are now addressing. A few years ago, the push was towards validation. Now that
validation has been achieved for most vendor products, optimizations and Chapter 13
features are being addressed, as well as tasking problems and runtime system variants. A
runtime system variant may contain such desired features as semaphores, mailboxes,
different tasking schedulers, etc., which are not part of the Ada language standard, but are
often required in real-time applications.

In general, configurability of the runtime system is being addressed by the vendors, runtime
sizes are decreasing, generated code quality (due to optimizations) is improving, and
Chapter 13 features are being implemented. All of these are features that users have
waited years for with great anticipation.

Other difficulties included obtaining the AVO reports for a given compilation system. The
current mechanism to obtain validation reports is unworkable. Because of multiple
validation sites and long delays between validation and the availability of the report from
the National Technical Information Service (NTIS), it is extremely difficult to obtain the
reports on compilers of interest. One way to avoid this might be to have all information
contained in the validation report maintained in machine readable form in a very regular
format. This information should be forwarded io the Ada Information Clearinghouse,
which would then be responsible for placing it in a directory on the AJPO host.

Finally, a serious potential customer should contact the AdalC directly to obtain the most
recent validation information, rather than relying solely on the published AdaIC listing of
validated compilation systems. The AdaIC listing changes monthly and the printed listing

-248-

Guideline to Select, Configure, and Use an Ada Runtime Environment

lags behind the actual validated compiler status. The AdaIC listing does provide a number
for the user to call to check on the most recent status.

-248.1-

Guideline to Select, Configure, and Use an Ada Runtime Environment

9. References

L] "Software Engineering Issues on Ada Technology Insertion for Real-time
mbedded Systems", final report delivered to Center for Software Engineering,

CECOM, by LabTek Corporation, September 30, 1987.

[2] Ada Runtime Environment Workin& Group of ACM SIGAda, "A Framework for
Describing Ada Runtime Environments', October 15, 1987.

[3] Ada Runtime Environment Working Group of ACM SIGAda, "First Annual Survey
of Mission Critical Application Requirements for Runtime Environments",
December 1, 1987.

[4] Ada Letters, "Ada Compiler Validation Procedures and Guidelines", ACM
SIGAda, Volume VII, Number 2, March, April 1987.

1

[5] ANSI/MIL-STD-181SA-1983. "Reference Manual for the Ada Programming
Language", American National Standards Institute, Inc., 1983.

[6] The Info-Ada Newsletter, Volume 2, Issue 2, February 1988, Volume 2, Issue 3,
March 1988, Vol. 2, Issue 8, August 1988.

[7] Nissen, PJC, Wichmann, BA, and others, "Ada-Europe Guidelines for Ada
Compiler Specification and Selection", Ada Letters, Volume III, Number 5,
March, April 1984.

[8] "An Approach to Tailoring the Ada Runtime Environment", interim report
delivered to Center for Software Engineering, CECOM, by IIT Research Institute,
1988.

[9] "Real Time Performance Benchmarks for Ada", interim report delivered to
Center for Software Engineering, CECOM, by Technical Management and Service
Corp., 1988.

[10] DDC-I Ada Compiler System, Run-Time System Configuration Guide for DACS-
0x86, Document No: DDC-I5801/RPT/66 Issue 3, DDC-I Ada Compiler System User's

Guide for DACS-80x86, Document No.: DDC-I 5801/RPT/62, Issue 9, DDC-I, Inc.,
Phoenix, AZ, 1988.

[11] User Manual, Tartan Ada VMS/ 1750A, Version Number V1.0, Tartan
Laboratories Inc., Pittsburgh, PA, 1987.

[2] System Designers' Ada-Plus VAX/VMS, MC68020 Vol 1, 2, and 3, Reference:
.A.REF.AF[BC-MH], Issue 3.0, System Designers, Cambridge, MA, 1988.

[13] Verdix Ada Development System VADS, Version 5.41 for SUN-3/UNIX = >
Motorola 68000 Family Processors, Document No. VAda-040-13125, Verdix Corp.,
VA, 1987.

-249-

Guideline to Select, Configure, and Use an Ada Runtime Environment

[141 Performance Issues Working Group of ACM SIGAda, PIWG Test Suite dated
January 1988.

[15] Alsys PC AT Ada Cross-Compiler for the Intel iAPX86 Family, "Cross
Development Guide, Appendix F, Ada Probe User's Guide", Version 3.2, August
1987, Alsys.

[161 Technical Summary for Alsys Cross Compilation System for Intel 80x86,
Version 3.21, July 11, 1988, Alsys.

[17] Technical Summary for Alsys Cross Compilation Systems for Motorola M680x0
(Version 3.5), July 11, 1988, Alsys.

[18] AdaIC Newsletter, Vol. VI, No. 2, July 1988. AdaIC Newsletter, March
1988, AdaIC Newsletter, December 1, 1987.

19] Technical Specification, Rational R1000 to M68000 Family Cross-
evelopment Facility, Document Control Number: 6001, Rev. 0, November 1986,

Rational.

[20] Technical Specification, Rational R1000 to MIL-STD-1750A Cross-
evelopment Facility, Document Control Number: 6000, Rev. 0, November 1986,

Rational.

[21] Technical Summary, Ada-86, Document: 6027-1, Sofrech Inc., Waltham, MA,
1986.

[22] "4th Annual Directory of Validated Ada Compilers", Defense Science &
lectronics, February 1988.

[23] Appendix F, Implementation-Dependent Language Features, Rational MIL-STD-
1750A Cross Development Facility, 6/15/88.

[24] Appendix F, Implementation-Dependent Language Features, Rational M68000
Cross Development Facility, 4/15/88.

[25] TeleGen2 User Guide for VAX/VMS to 1750A Targets, UG-1030N-V1.7
(VAX. 1750A), TeleSoft, January 1988.

[26] TeleGen2 User Guide for VAX/VMS to Embedded MC680X0 Targets, UG-1002N-
V (VAX.E68), TeleSoft, November 1987.

1 27] User Manual, Tartan Ada Runtime Client Package, Draft 880229.1559,
ersion 1.0, Tartan Laboratories Inc., 1988

[28] User Manual, Tartan Expanded Memory Package, Draft 880325.0905, Version
1.0, Tartan Laboratories Inc., 1988

-250-

Guideline to Select, Configure, and Use an Ada Runtime Environment

[29] Ada Compiler Validation Summary Report: Sof'ech, Inc., VAX 11/780 and
11/785 host for Intel iAPX 8086, Intel iAPX 80186, Intel iAPX 80286 real mode,
and Intel iAPX 8086 protected mode targets. Ada joint program office 1987.

[30] Ada Compiler Validation Summary Re ort: System Designers, SD VAX x
Motorola M68000/10 Ada-Plus, 2A.00 VA 8600 host for MC68010 target, June
1986.

[31] Ada Compiler Validation Summary Report: CAP Industry Ltd., CAPTACS-E286,
V1.0 DEC VAX 8800 host for Intel 80286 target, December 1986.

[32] Ada Compiler Validation Summary Report: TeleSoft, TeleGen2 E68, Version
3.11 MicroVAX II host for Motorola 68020, 68010, and Tektronix 8540 (M68010
CPU) target, September 1986.

-251-

Guideline to Select, Configure, and Use an Ada Runtime Environment

10 Appendix A

The following pages contain the survey submitted to the compiler vendors listed in section 4
of this report.

-252-

Guideline to Select, Configure, and Use an Ada Runtime Environment

SURVEY OF RUNTIME ENVIRONMENT COMPONENTS

Instructions: Attached is a list of eleven components of a runtime environment as defined
by the Ada RunTime Environment Working Group (ARTEWG) of SIGAda. Please
indicate the storage overhead associated with each feature, in K bytes. Sizes should include
both code and data, not just code storage. We would prefer it if you could adhere to our
breakdown of runtime environment components, but if your breakdown is significantly
different, use a separate sheet of paper and list each category with its storage requirement.
We are interested in the bare machine targets only. If your company provides more than
one bare machine target compiler, we would appreciate a response for each target. Just
duplicate the questionnaire as needed. Following the runtime environment components
section are seven additional questions.

Your responses will be used in a runtime environment study. The purpose of the study is to
provide information to the U.S. Army on how to configure a runtime environment. A copy
of the report will be placed in the public domain and will be provided to you upon request.
All compiler vendors of bare machine targets are being asked for their input. Your
response is appreciated.

sas...sssssalils..~sss slsl~sss..*S S*ss* Sss**s**SSS *******$ ******s ss s

HOST TARGET COMPILER DATE
VERSION

-253-

Guideline .o Select, Configure, and Use an Ada Runtime Environment

For each of the following components of your runtime, indicate the storage requirements
(both code and data). If your runtime does not support one of the features below, enter 0
frr the size.

DYNAMIC MEMORY MANAGEMENT Kbytes

Responsible for allocation and deallocation of storage at runtime. Also detects when a
request for storage cannot be fulfilled, and for raising the exception STORAGE-ERROR
as appropriate.

PROCESSOR MANAGEMENT Kbytes

Implements the assignment of physical processors to tasks that are "logically executing".
The processor management function is invoked by other components of the runtime
environment, in order to block and unblock tasks. It keeps a list of those tasks which are
"logically executing" and uses this list, in conjunction with the priorities of tasks, to
determine which task or tasks should be assigned to processors.

INTERRUPT MANAGEMENT Kbytes

Responsible for initialization of the interrupt mechanism of the underlying computing
resource, and it is also responsible for resetting that mechanism after an interrupt has
occurred, if the architecture of the underlying computing resource requires such resetting.

TIME MANAGEMENT Kbytes

Consists of all those portions of the runtime environment that will support the predefined
package CALENDAR and the im lementation of delay statements. If the underlying
computing resource offers enough functionality, the support of package CALENDAR is
trivial.

EXCEPTION MANAGEMENT Kbytes

Function implements Ada semantics for exceptions: that is, it determines whether there is a
matching handler for the exception at hand, and if there is one, it transfers control to the
handler. If there is no matching handler, it invokes the Task Termination function to
terminate the task at hand or the main program.

RENDEZVOUS MANAGEMENT Kbytes

Implements the semantics of the Ada rendezvous model. In order to do so, it utilizes
variables that are internal to the runtime environments. These variables reflect, among
other things, which tasks are blocked because they are waiting to rendezvous with other
tasks, and what the exact circumstances of these wait states are. The rendezvous
management function cooperates with the interrupt management function in the

-254-

Guideline to Select, Configure, and Use an Ada Runtime Environment

implementation of interrupt rendezvous, if the interrupt rendezvous is supported by the
runtime environment.

TASK ACTIVATION Kbytes

At some point after the task object has been created, the execution of the new task has to
be started. This is effected by the task activation function. This function is invoked by the
creator of a new task in order to start the new task's activation (which is defined as the
execution of the declarative part of the task's body). It may also be invoked by the new task
in order to signal the completion of that task's activation.

TASK TERMINATION Kbytes

Implements the set of rules for the completion, termination, and abortion of tasks.

I/O MANAGEMENT Kbytes

Consists of all those portions of the runtime environment that are provided for the support
of input and output. This includes in particular all those functions that support prede fined
packages from Chapter 14 of the Ada Reference Manual.

COMMONLY CALLED CODE Kbytes
SEQUENCES

A "catchall" category. It includes runtime routines in the classical sense: commonly called
sequences of code. Typical examples are operation for multi-word arithmetic, block moves
and string operations. Ada attribute calculations also fall into this category.

HOUSEKEEPING FUNCTIONS Kbytes

Associated with the start up and termination of the execution environment of an Ada
program. Such actions include determination of the particular hardware and software
execution environment, setting of variables identifying same, processor and interrupt
initializations, and so on. Similarly, if a program terminates, control is typically returned to
some surrounding software whose state must be reset upon program exit.

IS ANY COMPONENT MISSING? Kbytes

Use this space to indicate what you feel is not covered by the above components. (Explain
below.)

-255-

Guideline to Select, Configure, and Use an Ada Runtime Environment

ADDITIONAL QUESTIONS CONCERNING RUNTIME ENVIRONMENTS

1. What is the granularity of the linker in selecting objects to load? (Check only one).

.. _ALL objects are always loaded.
....... Any part of a library unit being required loads the entire unit.

_ndividual subprograms may be extracted from packages only.
=__Data objects that are referenced are allocated memory.

2. Is any user customization of the runtime possible? (Check all that apply).

....yes, by pragmas

....yes, by compniler switches
-.....yes, by moditrng/replacing the source to selective runtime routines provided

by the comip* er yendor with the purchase of the compiler (i.e. device drivers, etc.).
.....yS, by modifying the source to the entire runtime (after purchasing it)

3. What documentation is provided to help the user configure the runtime? (Title or titles
of manuals).

4. Does the compiler vendor provide services to customize the runtime for a particular
application?

ys, ... no

If yes, what charges are associated with these services? (Explain as necessary).

5. What is the price for the source code for the runtime environment?

or not for sale

-256-

Guideline to Select, Configure, and Use an Ada Runtime Environment

6. Can we contact you for any follow up questions or clarification of discrepancies?

-yes, ... _no

If yes, Name:
Phone Number:

7. State any important questions which you feel should have been included in this survey.

-257-

Guideline to Select, Configure, and Use an Ada Runtime Environment

SURVEY OF RUNTIME ENVIRONMENTS (V2.0)

LabTek Corp. is collecting information on Ada compilation systems to assist users in
selecting, configuring, and using Ada runtime environments. This work is sponsored by the
government, and the resulting catalogue is expected to be available to the public at cost of
duplication.

Thank you for responding to our request for information, which we were having some
difficulty obtaining from the compiler vendors. Your reply to the followin& questions will
be greatly appreciated. If you do not have information on a particular question, please skip
it and go on to the next one. If you have more than one target, we are primarily interested
in "bare" targets at this time.

Please return this form to:

LabTek Corp.
8 Lunar Drive
Woodbridge, CT 06525
Attn: Tom Griest

Thank you for your time and input.

Please indicate the "bare" machine compiler this survey pertains to, below:
S SSalIl lllal ii81 Se ssIC S s s is sessS s sIS S l ss8S S SSS **S ll88 S S iSSS S 38*5 8 * ** * ** S S S

HOST TARGET COMPILER DATE
VERSION

Your Name: Phone Number:

-258-

Guideline to Select, Configure, and Use an Ada Runtime Environment

DEGREE OF CONFIGURABILITY OF THE RUNTIME ENVIRONMENT

1. What is the granularity of the linker in selecting objects to load? (Check only one).

AT objects are always loaded.
Any part of a library unit being required loads the entire unit.

.. Individual subprograms and/or data objects may be extracted from packages
only.

2. Is any user customization of the runtime possible? (Check all that apply).

-by pragmas
-by compiler switches
-by linker switches
-by modifying/replacing the source to selective runtime routines provided
by the compiler vendor with the purchase of the compiler (i.e. device drivers, etc.).
-.._by modifying the source to the entire runtime (after purchasing it)

... not configurable

3. What documentation is provided to help the user configure the runtime? (Title or titles
of manuals).

4. Does the compiler vendor provide services to customize the runtime for a particular
application?

.__yes, _...no

If yes, what charges are associated with these services? (Explain as necessary).

5. What is the price for the source code for the runtime environment?

or ... not for sale

-259-

Guideline to Select, Configure, and Use an Ada Runtime Environment

6. The following questions are considered to be the 'TOP 10" questions that must be asked
before deciding to use a runtime for real-time software.

6.1 a.) What is the resolution of the clock used for delay statements?

6.1 b.) How long, and for what reasons are interrupts disabled?

6.2. What rendezvous optimizations are performed? For example, when can the called task
operate in the-same context as the calling task?

6.3. What are the restrictions for representation clauses? (Attach separate sheet if
necessary).

6.4. What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.

6.5 What are the restrictions on pragma INLINE?

6.6 Is code "ROM"able?

-260-

Guideline to Select, Configure, and Use an Ada Runtime Environment

6.7 What is the specification for package STANDARD? (Attach separate sheet).

6.8 What is the specification for package SYSTEM? (Attach separate sheet).

6.9 Are machine code inserts supported?

6.10 What object types are supported by pragma SHARED?

7. Check the items below that are configurable for your runtime system. Fill in additional
items not found on the list in the spaces provided.

-- Maximum No. of Tasks - Dynamic Task Priority

Task Time Slice Default .. Semaphore Operations

-Timer Resolution Exception Trace

-..-Default Stack Sizes .. Fast Interrupt Entry

Default Task Priority Terminal I/O

-Optional Numeric Co-processor ...- Runtime System Variations (i.e. priority
inheritance)

-261-

Guideline to Select, Configure, and Use an Ada Runtime Environment

8. For each of the following components of the runtime, indicate the storage requirements
(both code and data). If the runtime does not support one of the features below, enter 0 for
the size. (See supplement for definitions, if needed).

DYNAMIC MEMORY MANAGEMENT Kbytes

PROCESSOR MANAGEMENT Kbytes

INTERRUPT MANAGEMENT Kbytes

TIME MANAGEMENT Kbytes

EXCEPTION MANAGEMENT Kbytes

RENDEZVOUS MANAGEMENT Kbytes

TASK ACTIVATION Kbytes

TASK TERMINATION Kbytes

I/O MANAGEMENT Kbytes

COMMONLY CALLED CODE K Kbytes
SEQUENCES

HOUSEKEEPING FUNCTIONS Kbytes

IS ANY COMPONENT MISSING? (please Kbytes
list)

9. The name of a good technical contact at the compiler vendor?

Name:
Phone:

Thank You!

-262-

Guideline to Select, Configure, and Use an Ada Runtime Environment

SUPPLEMENT TO SURVEY V2.0

DESCRIPTION OF RUNTIME ENVIRONMENT COMPONENTS

AS DETERMINED BY THE ARTEWG

DYNAMIC MEMORY MANAGEMENT - Responsible for allocation and deallocation of
storage at runtime. Also detects when a request for storage cannot be fulfilled, and for
raising the exception STORAGE-ERROR as appropriate.

PROCESSOR MANAGEMENT - Implements the assignment of physical processors to
tasks that are "logically executing". The processor management function is invoked by other
components of the runtime environment, in order to block and unblock tasks. It keeps a list
of those tasks which are "logically executing" and uses this list, in conjunction with the
priorities of tasks, to determine which task or tasks should be assigned to processors.

INTERRUPT MANAGEMENT - Responsible for initialization of the interrupt mechanism
of the underlying computing resource, and it is also responsible for r'-setting that
mechanism after an interrupt has occurred, if the architecture of the underlying computing
resource requires such resetting.

TIME MANAGEMENT - Consists of all those portions of the runtime environment that
will support the predefined package CALENDAR and the implementation of delay
statements. If the underlying computing resource offers enough functionality, the support
of package CALENDAR is trivial.

EXCEPTION MANAGEMENT - Function implements Ada semantics for exceptions: that
is, it determines whether there is a matching handler for the exception at hand, and if there
is one, it transfers control to the handler. If there is no matching handler, it invokes the
Task Termination function to terminate the task at hand or the main program.

RENDEZVOUS MANAGEMENT - Implements the semantics of the Ada rendezvous
model. In order to do so, it utilizes variables that are internal to the runtime environments.
These variables reflect, among other things, which tasks are blocked because they are
waiting to rendezvous with other tasks, and what the exact circumstances of these wait states
are. The rendezvous management function cooperates with the interrupt management
function in the implementation of interrupt rendezvous, if the interrupt rendezvous is
supported by the runtime environment.

TASK ACTIVATION - At some point after the task object has been created, the execution
of the new task has to be started. This is effected by the task activation function. This
function is invoked by the creator of a new task in order to start the new task's activation
(which is defined as the execution of the declarative part of the task's body). It may also be
invoked by the new task in order to signal the completion of that task's activation.

TASK TERMINATION - Implements the set of rules for the completion, termination, and
abortion of tasks.

-263-

Guideline to Select, Configure, and Use an Ada Runtime Environment

I/O MANAGEMENT - Consists of all those portions of the runtime environment that are
provided for the support of input and output. This includes in particular all those functions
that support predeed packages from Chapter 14 of the Ada Reference Manual.

COMMONLY CALLED CODE SEQUENCES - A "catchall" category. It includes runtime
routines in the classical sense: commonly called sequences of code. Typical examples are
operation for multi-word arithmetic, block moves and string operations. Ada attribute
calculations also fall into this category.

HOUSEKEEPING FUNCTIONS - Associated with the start up and termination of the
execution environment of an Ada program. Such actions include determination of the
particular hardware and software execution environment, setting of variables identifying
same, processor and interrupt initializations, and so on. Similarly, if a program terminates,
control is typically returned to some surrounding software whose state must be reset upon
program exit.

IS ANY COMPONENT MISSING? - Use this space to indicate what you feel is not
covered by the above components. (Explain below.)

-264-

